Wenzhi Yang , Lingling Yang , Bin Cai , Ling Wu , Siqi Feng , Yongzhi Cheng , Fu Chen , Hui Luo , Xiangcheng Li
{"title":"Efficiency tunable terahertz graphene metasurfaces for reflective single/dual-focusing effects based on Pancharatnam-Berry phase","authors":"Wenzhi Yang , Lingling Yang , Bin Cai , Ling Wu , Siqi Feng , Yongzhi Cheng , Fu Chen , Hui Luo , Xiangcheng Li","doi":"10.1016/j.rinp.2024.108003","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an efficiency tunable reflective metasurface (MS) consisting of a dielectric substrate sandwiched between hollow Z-shaped (HZS) structure graphene and a metallic ground plane is proposed for single/dual-focusing effects based on Pancharatnam-Berry (PB) in terahertz (THz) region. Numerical simulations demonstrate that the designed HZS graphene can achieve a circular polarization (CP) conversion with efficiency of approximately 98 % at a Fermi energy level (<em>E<sub>F</sub></em>) of 1.0 eV. Moreover, by adjusting the rotation angle of the HZS graphene, a full 0-2π phase coverage can be achieved. Of note, the simulation results also reveal that the reflective CP conversion efficiency is highly dependent on the value of the <em>E<sub>F</sub></em>. By carefully designing the spatial phase distribution of the graphene MS, tunable reflective single/dual-focusing effects can be realized, with focusing efficiency controlled by the <em>E<sub>F</sub></em>. It is anticipated that the proposed tunable graphene MS will have broad applications in communications, imaging, and others in THz domains.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"65 ","pages":"Article 108003"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an efficiency tunable reflective metasurface (MS) consisting of a dielectric substrate sandwiched between hollow Z-shaped (HZS) structure graphene and a metallic ground plane is proposed for single/dual-focusing effects based on Pancharatnam-Berry (PB) in terahertz (THz) region. Numerical simulations demonstrate that the designed HZS graphene can achieve a circular polarization (CP) conversion with efficiency of approximately 98 % at a Fermi energy level (EF) of 1.0 eV. Moreover, by adjusting the rotation angle of the HZS graphene, a full 0-2π phase coverage can be achieved. Of note, the simulation results also reveal that the reflective CP conversion efficiency is highly dependent on the value of the EF. By carefully designing the spatial phase distribution of the graphene MS, tunable reflective single/dual-focusing effects can be realized, with focusing efficiency controlled by the EF. It is anticipated that the proposed tunable graphene MS will have broad applications in communications, imaging, and others in THz domains.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.