The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases
IF 2.3 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases","authors":"Sajad Najafi , Azam Rahimpour , Hamid Ahmadieh , Maryam Maleki Tehrani , Mohammad Amin Khalilzad , Fatemeh Suri , Javad Ranjbari","doi":"10.1016/j.ejbt.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Viral vectors are among the main approaches currently used in studies for executing gene delivery to target cells. During the past decades of active studies in gene therapy, including viruses, adenoviruses (Ads), lentiviruses (LVs), and adeno-associated viruses (AAVs), have received the most attention among the biological approaches where potentially successful outcomes are recorded for numerous genetic conditions. The success of delivery methods, however, remains unsatisfactory. Using some additives that can improve transgene expression, transfection efficiency, viral particle production, and transduction efficiency is considered as a solution to overcoming the limitations of gene delivery approaches. These additives include caffeine, histone deacetylase (HDAC) inhibitors like sodium butyrate and valproic acid, and polycationic agents like polybrene and protamine sulfate. In this review article, we present an overview of viral vector-mediated retinal gene therapies and the application of some enhancers used to improve the outcomes of gene delivery. Three routes of administrating viral vectors into ocular compartments are employed for the delivery of target genes into impacted cells, and some additives have shown enhanced efficiency of gene delivery in retinal cells. The current study places a special focus on the viral vectors and enhancers used for gene therapies of inherited retinal diseases.</div><div><strong>How to cite:</strong> Najafi S, Rahimpour A, Ahmadieh H, et al. The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases. Electron J Biotechnol 2024;72. <span><span>https://doi.org/10.1016/j.ejbt.2024.07.005</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"72 ","pages":"Pages 29-40"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345824000265","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viral vectors are among the main approaches currently used in studies for executing gene delivery to target cells. During the past decades of active studies in gene therapy, including viruses, adenoviruses (Ads), lentiviruses (LVs), and adeno-associated viruses (AAVs), have received the most attention among the biological approaches where potentially successful outcomes are recorded for numerous genetic conditions. The success of delivery methods, however, remains unsatisfactory. Using some additives that can improve transgene expression, transfection efficiency, viral particle production, and transduction efficiency is considered as a solution to overcoming the limitations of gene delivery approaches. These additives include caffeine, histone deacetylase (HDAC) inhibitors like sodium butyrate and valproic acid, and polycationic agents like polybrene and protamine sulfate. In this review article, we present an overview of viral vector-mediated retinal gene therapies and the application of some enhancers used to improve the outcomes of gene delivery. Three routes of administrating viral vectors into ocular compartments are employed for the delivery of target genes into impacted cells, and some additives have shown enhanced efficiency of gene delivery in retinal cells. The current study places a special focus on the viral vectors and enhancers used for gene therapies of inherited retinal diseases.
How to cite: Najafi S, Rahimpour A, Ahmadieh H, et al. The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases. Electron J Biotechnol 2024;72. https://doi.org/10.1016/j.ejbt.2024.07.005.
期刊介绍:
Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology.
The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th).
The following areas are covered in the Journal:
• Animal Biotechnology
• Biofilms
• Bioinformatics
• Biomedicine
• Biopolicies of International Cooperation
• Biosafety
• Biotechnology Industry
• Biotechnology of Human Disorders
• Chemical Engineering
• Environmental Biotechnology
• Food Biotechnology
• Marine Biotechnology
• Microbial Biotechnology
• Molecular Biology and Genetics
•Nanobiotechnology
• Omics
• Plant Biotechnology
• Process Biotechnology
• Process Chemistry and Technology
• Tissue Engineering