Diyu Wang , Subin Lin , Tuanwei Li , Xiaohu Yang , Xiang Zhong , Qian Chen , Guoqin Jiang , Chunyan Li
{"title":"Cancer cell membrane-coated siRNA-Decorated Au/MnO2 nanosensitizers for synergistically enhanced radio-immunotherapy of breast cancer","authors":"Diyu Wang , Subin Lin , Tuanwei Li , Xiaohu Yang , Xiang Zhong , Qian Chen , Guoqin Jiang , Chunyan Li","doi":"10.1016/j.mtbio.2024.101275","DOIUrl":null,"url":null,"abstract":"<div><div>Radiotherapy plays a critical role in the clinical treatment of breast cancer. However, the efficacy of traditional X-ray radiotherapy is greatly limited by its low tumor specificity and treatment tolerance mediated by the tumor microenvironment. Herein, we proposed a novel nano-radiotherapy sensitization strategy to design and construct a cancer cell membrane-coated siRNA-decorated Au/MnO<sub>2</sub> nanosensitizer (R&F@Au/MnO<sub>2</sub>-CM) to synergistically enhance radio-immunotherapy for breast cancer. In the integrated nanosensitizer, the cancer cell membrane (CM) derived from 4T1 breast cancer cells is utilized for targeted functionality, while Au/MnO<sub>2</sub> is designed to improve X-ray absorption and alleviate tumor hypoxia. Additionally, PD-L1 siRNA (R) is used to downregulate PD-L1 expression in tumor cells. In an in situ mouse model of 4T1 breast cancer, R&F@Au/MnO<sub>2</sub>-CM demonstrated accurate tumor identification via CM-mediated homologous targeting after intravenous injection, which was monitored in real-time through NIR-II fluorescence imaging of NIR-935 (F). Subsequently, the radiotherapy sensitivity was achieved due to the strong radiation absorption properties and oxygen generation through catalysis of Au/MnO<sub>2</sub> upon X-ray irradiation. Furthermore, the immunosuppressive microenvironment of the tumor is improved by downregulating PD-L1, enhancing synergistic anti-tumor effect. Our findings demonstrate a promising approach for tumor treatment by combining targeted enhanced radiotherapy with immune activation.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101275"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003363","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy plays a critical role in the clinical treatment of breast cancer. However, the efficacy of traditional X-ray radiotherapy is greatly limited by its low tumor specificity and treatment tolerance mediated by the tumor microenvironment. Herein, we proposed a novel nano-radiotherapy sensitization strategy to design and construct a cancer cell membrane-coated siRNA-decorated Au/MnO2 nanosensitizer (R&F@Au/MnO2-CM) to synergistically enhance radio-immunotherapy for breast cancer. In the integrated nanosensitizer, the cancer cell membrane (CM) derived from 4T1 breast cancer cells is utilized for targeted functionality, while Au/MnO2 is designed to improve X-ray absorption and alleviate tumor hypoxia. Additionally, PD-L1 siRNA (R) is used to downregulate PD-L1 expression in tumor cells. In an in situ mouse model of 4T1 breast cancer, R&F@Au/MnO2-CM demonstrated accurate tumor identification via CM-mediated homologous targeting after intravenous injection, which was monitored in real-time through NIR-II fluorescence imaging of NIR-935 (F). Subsequently, the radiotherapy sensitivity was achieved due to the strong radiation absorption properties and oxygen generation through catalysis of Au/MnO2 upon X-ray irradiation. Furthermore, the immunosuppressive microenvironment of the tumor is improved by downregulating PD-L1, enhancing synergistic anti-tumor effect. Our findings demonstrate a promising approach for tumor treatment by combining targeted enhanced radiotherapy with immune activation.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).