{"title":"Four-stage cascaded adaptive sliding mode control for automatic carrier landing with airwake disturbances and uncertainties","authors":"Dana-Aurelia Dinu VÎLCICĂ , Mihai Lungu , Mou Chen , Alexandru-Nicolae Tudosie","doi":"10.1016/j.apm.2024.115729","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This paper addresses the carrier landing affected by airwake, parametric uncertainties, and carrier deck motion, its main target being the design of a novel sliding mode based automatic carrier landing system to obtain accurate tracking of the reference trajectory, robustness in terms of disturbances and uncertainties, as well as excellent touchdown accuracy.</div></div><div><h3>Approach</h3><div>For an aircraft nonlinear dynamics, written under a four-stage cascaded strict feedback form, the design of the novel landing control architecture involves the design of a guidance subsystem, robust sliding mode controllers (for the control of the heading angle, attitude angles, and angular rates), an approach power compensation system, adaptive control laws suppressing the uncertainties and disturbances, a Kalman filter for deck motion prediction, a block computing the reference trajectory, a tracking differentiator block for deck motion compensation, and first-order command filters.</div></div><div><h3>Main results</h3><div>The software validation process proves the effectiveness of the sliding mode based control scheme and the suppression of the uncertainties and disturbances. Also, the comparison between the performances of the sliding mode control based carrier landing system and the ones associated to other automatic carrier landing systems shows the superiority of the sliding mode based control scheme, as well as its better touchdown accuracy and landing success rate.</div></div><div><h3>Significance</h3><div>This study innovatively transforms the general carrier landing problem into a time-varying tracking control problem for cascaded strict feedback dynamics with disturbances and uncertainties. The new designed automatic carrier landing system is the first control architecture in the literature employing the sliding mode control augmented by adaptive control laws for carrier landing, subjected to airwake, deck motion, and uncertainties.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004827","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This paper addresses the carrier landing affected by airwake, parametric uncertainties, and carrier deck motion, its main target being the design of a novel sliding mode based automatic carrier landing system to obtain accurate tracking of the reference trajectory, robustness in terms of disturbances and uncertainties, as well as excellent touchdown accuracy.
Approach
For an aircraft nonlinear dynamics, written under a four-stage cascaded strict feedback form, the design of the novel landing control architecture involves the design of a guidance subsystem, robust sliding mode controllers (for the control of the heading angle, attitude angles, and angular rates), an approach power compensation system, adaptive control laws suppressing the uncertainties and disturbances, a Kalman filter for deck motion prediction, a block computing the reference trajectory, a tracking differentiator block for deck motion compensation, and first-order command filters.
Main results
The software validation process proves the effectiveness of the sliding mode based control scheme and the suppression of the uncertainties and disturbances. Also, the comparison between the performances of the sliding mode control based carrier landing system and the ones associated to other automatic carrier landing systems shows the superiority of the sliding mode based control scheme, as well as its better touchdown accuracy and landing success rate.
Significance
This study innovatively transforms the general carrier landing problem into a time-varying tracking control problem for cascaded strict feedback dynamics with disturbances and uncertainties. The new designed automatic carrier landing system is the first control architecture in the literature employing the sliding mode control augmented by adaptive control laws for carrier landing, subjected to airwake, deck motion, and uncertainties.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.