Improving the bactericidal activity of carvacrol against Bacillus cereus by the formation of sodium casein-stabilized nanoemulsion and its application in milk preservation
{"title":"Improving the bactericidal activity of carvacrol against Bacillus cereus by the formation of sodium casein-stabilized nanoemulsion and its application in milk preservation","authors":"Jun Li, Fu-Yu Liu, Bao-Lin He, Rui Cui, Hong Wu","doi":"10.1016/j.foodhyd.2024.110697","DOIUrl":null,"url":null,"abstract":"<div><div>Carvacrol has great antibacterial activity against <em>Bacillus cereus</em>, and its action mechanism was comprehensively studied in this work. It could not only control the growth of <em>B. cereus</em> by affecting the integrality of cellular structure and physiological metabolism, but also inhibit the swarming motility, biofilm formation, and toxins production. To increase the stability of carvacrol during the application, the sodium casein (SC)/hydroxypropyl-<em>β</em>-cyclodextrin (HPCD)/carvacrol nanoemulsion was fabricated. The mean particle size and polydispersity index of the nanoemulsions were 113.8 nm and 0.23, respectively, at SC and HPCD concentrations of 2% and 1%. FTIR analysis demonstrated that carvacrol was successfully encapsulated into the nanoemulsions. The MIC and MBC of nanoemulsions against <em>B. cereus</em> were 0.15 and 0.30 mg/mL, respectively, which were lower than those of free carvacrol (0.19 and 0.38 mg/mL). Carvacrol in nanoemulsions showed a slow and sustained release behavior. Furthermore, the nanoemulsions had good stability (particle size <200 nm) after storage at 4 °C and 25 °C for 15 days. Notably, the nanoemulsions were effective in controlling the growth of <em>B. cereus</em> in whole, low-fat, and skim milk and had better antimicrobial activity than free carvacrol. The results indicated that carvacrol nanoemulsions have potential in the antibacterial application of the food industry.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"159 ","pages":"Article 110697"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24009718","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Carvacrol has great antibacterial activity against Bacillus cereus, and its action mechanism was comprehensively studied in this work. It could not only control the growth of B. cereus by affecting the integrality of cellular structure and physiological metabolism, but also inhibit the swarming motility, biofilm formation, and toxins production. To increase the stability of carvacrol during the application, the sodium casein (SC)/hydroxypropyl-β-cyclodextrin (HPCD)/carvacrol nanoemulsion was fabricated. The mean particle size and polydispersity index of the nanoemulsions were 113.8 nm and 0.23, respectively, at SC and HPCD concentrations of 2% and 1%. FTIR analysis demonstrated that carvacrol was successfully encapsulated into the nanoemulsions. The MIC and MBC of nanoemulsions against B. cereus were 0.15 and 0.30 mg/mL, respectively, which were lower than those of free carvacrol (0.19 and 0.38 mg/mL). Carvacrol in nanoemulsions showed a slow and sustained release behavior. Furthermore, the nanoemulsions had good stability (particle size <200 nm) after storage at 4 °C and 25 °C for 15 days. Notably, the nanoemulsions were effective in controlling the growth of B. cereus in whole, low-fat, and skim milk and had better antimicrobial activity than free carvacrol. The results indicated that carvacrol nanoemulsions have potential in the antibacterial application of the food industry.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.