{"title":"Effect of laser power during laser powder bed fusion on microstructure of joining interface between Tungsten and AISI 316L steel","authors":"","doi":"10.1016/j.addlet.2024.100246","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the deposition of tungsten (W) onto a 316L steel substrate by laser powder bed fusion (L-PBF), to optimize process parameters and analyze the interface between W and 316L. To obtain high-density W structure (98.89%), the optimal laser power was 350 W, and scan speed was 500 mm/s, but these parameters cause significant dilution of W in the W-316L interface; as a result, Fe<sub>7</sub>W<sub>6</sub> intermetallics form, despite L-PBF being a non-equilibrium solidification process. These intermetallics which are brittle could degrade joint strength. By reducing laser power below 250 W, the dilution of W can be mitigated, and potentially minimize formation of intermetallics and increase joint stability for advanced manufacturing applications.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the deposition of tungsten (W) onto a 316L steel substrate by laser powder bed fusion (L-PBF), to optimize process parameters and analyze the interface between W and 316L. To obtain high-density W structure (98.89%), the optimal laser power was 350 W, and scan speed was 500 mm/s, but these parameters cause significant dilution of W in the W-316L interface; as a result, Fe7W6 intermetallics form, despite L-PBF being a non-equilibrium solidification process. These intermetallics which are brittle could degrade joint strength. By reducing laser power below 250 W, the dilution of W can be mitigated, and potentially minimize formation of intermetallics and increase joint stability for advanced manufacturing applications.