Gorkem Anil Al, Nicholas Hedworth, Douglas Tilley, Samer Ahmed, Richmond Afeawo, Uriel Martinez-Hernandez
{"title":"BEATRIX: An open source humanoid head platform for robotics teaching and research","authors":"Gorkem Anil Al, Nicholas Hedworth, Douglas Tilley, Samer Ahmed, Richmond Afeawo, Uriel Martinez-Hernandez","doi":"10.1016/j.ohx.2024.e00591","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces BEATRIX, a novel robotic head designed to bridge the gap between theoretical knowledge and practical experience in the field of robotics at universities. The BEATRIX robot comprises a head actuated by a neck-like mechanism with three stepper motors, two cameras and two microphones for acquisition of visual and audio information from the environment. The robot can be connected to any external computer for the design and implementation of algorithms for applications in human–robot interaction. The proposed robotic platform has been used successfully with undergraduate and master students implementing tasks such as face detection and tracking, sound detection and tracking, robot control and graphical user interfaces. This paper includes lists of all the robot components, assembly instructions, and links to all CAD and software files, facilitating replication and further exploration. The robot design and integration of visual and audio sensors enables the development of engaging educational tutorials and robot experiments, enhancing the teaching and learning experience in robotics.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00591"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces BEATRIX, a novel robotic head designed to bridge the gap between theoretical knowledge and practical experience in the field of robotics at universities. The BEATRIX robot comprises a head actuated by a neck-like mechanism with three stepper motors, two cameras and two microphones for acquisition of visual and audio information from the environment. The robot can be connected to any external computer for the design and implementation of algorithms for applications in human–robot interaction. The proposed robotic platform has been used successfully with undergraduate and master students implementing tasks such as face detection and tracking, sound detection and tracking, robot control and graphical user interfaces. This paper includes lists of all the robot components, assembly instructions, and links to all CAD and software files, facilitating replication and further exploration. The robot design and integration of visual and audio sensors enables the development of engaging educational tutorials and robot experiments, enhancing the teaching and learning experience in robotics.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.