Yosef Berman , Joshua Forrest , Matthew Grote , Alexey Ovchinnikov , Sonia L. Rueda
{"title":"Symbolic-numeric algorithm for parameter estimation in discrete-time models with exp","authors":"Yosef Berman , Joshua Forrest , Matthew Grote , Alexey Ovchinnikov , Sonia L. Rueda","doi":"10.1016/j.jsc.2024.102387","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic models describe phenomena across scientific disciplines, yet to make these models useful in application the unknown parameter values of the models must be determined. Discrete-time dynamic models are widely used to model biological processes, but it is often difficult to determine these parameters. In this paper, we propose a symbolic-numeric approach for parameter estimation in discrete-time models that involve univariate non-algebraic (locally) analytic functions such as exp. We illustrate the performance (precision) of our approach by applying our approach to two archetypal discrete-time models in biology (the flour beetle ‘LPA’ model and discrete Lotka-Volterra competition model). Unlike optimization-based methods, our algorithm guarantees to find all solutions of the parameter values up to a specified precision given time-series data for the measured variables provided that there are finitely many parameter values that fit the data and that the used polynomial system solver can find all roots of the associated polynomial system with interval coefficients.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000919","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic models describe phenomena across scientific disciplines, yet to make these models useful in application the unknown parameter values of the models must be determined. Discrete-time dynamic models are widely used to model biological processes, but it is often difficult to determine these parameters. In this paper, we propose a symbolic-numeric approach for parameter estimation in discrete-time models that involve univariate non-algebraic (locally) analytic functions such as exp. We illustrate the performance (precision) of our approach by applying our approach to two archetypal discrete-time models in biology (the flour beetle ‘LPA’ model and discrete Lotka-Volterra competition model). Unlike optimization-based methods, our algorithm guarantees to find all solutions of the parameter values up to a specified precision given time-series data for the measured variables provided that there are finitely many parameter values that fit the data and that the used polynomial system solver can find all roots of the associated polynomial system with interval coefficients.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.