Erik Parkinson , Kate Wall , Jane Slagle , Daniel Treuhaft , Xander de la Bruere , Samuel Goldrup , Timothy Keith , Peter Call , Tyler J. Jarvis
{"title":"Chebyshev subdivision and reduction methods for solving multivariable systems of equations","authors":"Erik Parkinson , Kate Wall , Jane Slagle , Daniel Treuhaft , Xander de la Bruere , Samuel Goldrup , Timothy Keith , Peter Call , Tyler J. Jarvis","doi":"10.1016/j.jsc.2024.102392","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new algorithm for finding isolated zeros of a system of real-valued functions in a bounded interval in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. It uses the Chebyshev proxy method combined with a mixture of subdivision, reduction methods, and elimination checks that leverage special properties of Chebyshev polynomials. We prove the method has quadratic convergence locally near simple zeros of the system. It also finds all nonsimple zeros, but convergence to those zeros is not guaranteed to be quadratic. We also analyze the arithmetic complexity and the numerical stability of the algorithm and provide numerical evidence in dimensions up to five that the method is both fast and accurate on a wide range of problems. Our tests show that the algorithm outperforms other standard methods on the problem of finding all real zeros in a bounded domain. Our Python implementation of the algorithm is publicly available at <span><span>https://github.com/tylerjarvis/RootFinding</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000968","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new algorithm for finding isolated zeros of a system of real-valued functions in a bounded interval in . It uses the Chebyshev proxy method combined with a mixture of subdivision, reduction methods, and elimination checks that leverage special properties of Chebyshev polynomials. We prove the method has quadratic convergence locally near simple zeros of the system. It also finds all nonsimple zeros, but convergence to those zeros is not guaranteed to be quadratic. We also analyze the arithmetic complexity and the numerical stability of the algorithm and provide numerical evidence in dimensions up to five that the method is both fast and accurate on a wide range of problems. Our tests show that the algorithm outperforms other standard methods on the problem of finding all real zeros in a bounded domain. Our Python implementation of the algorithm is publicly available at https://github.com/tylerjarvis/RootFinding.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.