{"title":"Atomistic analysis of nano He bubble evolution in Al: considering stress triaxiality and Lode parameter effects","authors":"Wei-Dong Wu , Jian-Li Shao","doi":"10.1016/j.engfracmech.2024.110527","DOIUrl":null,"url":null,"abstract":"<div><div>The He bubble is of utmost importance for understanding the dynamics and evaluating the performance of irradiated metals. This work systematically investigates the effect of the stress triaxiality and Lode parameter on the evolution of He bubble in Al via molecular dynamic simulations. Numerical results show that implanting He atoms into the cavity reduces the yield strength but boosts the ductility of the material, with this effect becoming more pronounced as both the stress triaxiality and Lode parameter decrease. One important discovery is the He bubble fragmentation under low stress triaxiality, and the underlying mechanism mediated by dislocation slip and surface diffusion is clearly revealed. Conversely, the He bubble tends to coalesce under high stress triaxiality, and the coalescence strain increases with the increasing He concentration. Additionally, the heuristic applications of coalescence onset criteria for He bubble are explored. The extended Thomason criterion, considering the hardening effect, provides qualitatively acceptable predictions.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"310 ","pages":"Article 110527"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006908","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The He bubble is of utmost importance for understanding the dynamics and evaluating the performance of irradiated metals. This work systematically investigates the effect of the stress triaxiality and Lode parameter on the evolution of He bubble in Al via molecular dynamic simulations. Numerical results show that implanting He atoms into the cavity reduces the yield strength but boosts the ductility of the material, with this effect becoming more pronounced as both the stress triaxiality and Lode parameter decrease. One important discovery is the He bubble fragmentation under low stress triaxiality, and the underlying mechanism mediated by dislocation slip and surface diffusion is clearly revealed. Conversely, the He bubble tends to coalesce under high stress triaxiality, and the coalescence strain increases with the increasing He concentration. Additionally, the heuristic applications of coalescence onset criteria for He bubble are explored. The extended Thomason criterion, considering the hardening effect, provides qualitatively acceptable predictions.
氦气泡对于了解辐照金属的动力学和评估其性能至关重要。这项研究通过分子动力学模拟,系统地研究了应力三轴性和 Lode 参数对铝中 He 气泡演化的影响。数值结果表明,将 He 原子植入空腔会降低材料的屈服强度,但会提高材料的延展性。一个重要的发现是,在低应力三轴度条件下,氦气泡会碎裂,并清楚地揭示了由位错滑移和表面扩散介导的潜在机制。相反,在高应力三轴度条件下,氦气泡趋于凝聚,且凝聚应变随氦气浓度的增加而增大。此外,还探讨了 He 气泡凝聚起始准则的启发式应用。考虑到硬化效应的扩展托马森准则提供了质量上可以接受的预测。
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.