Leandro Massó , Antoine Patalano , Carlos M. García , Santiago A. Ochoa García , Andrés Rodríguez
{"title":"Enhancing LSPIV accuracy in low-speed flows and heterogeneous seeding conditions using image gradient","authors":"Leandro Massó , Antoine Patalano , Carlos M. García , Santiago A. Ochoa García , Andrés Rodríguez","doi":"10.1016/j.flowmeasinst.2024.102706","DOIUrl":null,"url":null,"abstract":"<div><div>Flow measurement in rivers and channels is crucial for water resource management and infrastructure planning, especially under the context of climate change. However, traditional methods like mechanical current meters and hydroacoustic instruments face limitations in terms of cost, intrusiveness, and accessibility. In recent years, image-based velocimetry techniques have emerged as promising alternatives due to their non-contact nature and cost-effectiveness. Nevertheless, persistent challenges remain, particularly concerning the uniform distribution of surface tracers necessary for precise measurements. These challenges are particularly pronounced in cases involving artificial seeding, where ensuring uniform distribution poses a significant obstacle. To address this issue, this study presents a novel methodology for filtering Large Scale Particle Image Velocimetry (LSPIV) data based on indicators of pixel intensity gradients. The methodology was evaluated across various field measurements under low flow conditions, encompassing a wide range of seeding characteristics. The evaluations demonstrated improvements in mean surface velocity profile estimation, showing reductions of up to 70 % in normalized root mean square error compared to not using filters. Additionally, the results were compared with filters typically employed by experienced LSPIV users, such as background subtraction and cross-correlation coefficient thresholds, showing improvements with the proposed filter. Implementation of the proposed strategy reduces the subjectivity in LSPIV implementation, particularly for users with limited knowledge of the technique, but also require minimal post-processing efforts. The methodology is anticipated to be integrated into existing software tools, thereby enhancing the accessibility of LSPIV for individuals with limited expertise in image velocimetry. Overall, this methodology facilitates cost-effective expansion of hydrological information availability, particularly in resource-constrained regions.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102706"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001869","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flow measurement in rivers and channels is crucial for water resource management and infrastructure planning, especially under the context of climate change. However, traditional methods like mechanical current meters and hydroacoustic instruments face limitations in terms of cost, intrusiveness, and accessibility. In recent years, image-based velocimetry techniques have emerged as promising alternatives due to their non-contact nature and cost-effectiveness. Nevertheless, persistent challenges remain, particularly concerning the uniform distribution of surface tracers necessary for precise measurements. These challenges are particularly pronounced in cases involving artificial seeding, where ensuring uniform distribution poses a significant obstacle. To address this issue, this study presents a novel methodology for filtering Large Scale Particle Image Velocimetry (LSPIV) data based on indicators of pixel intensity gradients. The methodology was evaluated across various field measurements under low flow conditions, encompassing a wide range of seeding characteristics. The evaluations demonstrated improvements in mean surface velocity profile estimation, showing reductions of up to 70 % in normalized root mean square error compared to not using filters. Additionally, the results were compared with filters typically employed by experienced LSPIV users, such as background subtraction and cross-correlation coefficient thresholds, showing improvements with the proposed filter. Implementation of the proposed strategy reduces the subjectivity in LSPIV implementation, particularly for users with limited knowledge of the technique, but also require minimal post-processing efforts. The methodology is anticipated to be integrated into existing software tools, thereby enhancing the accessibility of LSPIV for individuals with limited expertise in image velocimetry. Overall, this methodology facilitates cost-effective expansion of hydrological information availability, particularly in resource-constrained regions.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.