Effect of ambient pressure on the fire characteristics of lithium-ion battery energy storage container

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL
{"title":"Effect of ambient pressure on the fire characteristics of lithium-ion battery energy storage container","authors":"","doi":"10.1016/j.jlp.2024.105459","DOIUrl":null,"url":null,"abstract":"<div><div>As lithium-ion battery energy storage gains popularity and application at high altitudes, the evolution of fire risk in storage containers remains uncertain. In this study, numerical simulation is employed to investigate the fire characteristics of lithium-ion battery storage container under varying ambient pressures. The findings reveal that the peak heat release rate of fires at normal pressure is significantly higher than at lower pressure. Specifically, the heat release rate at 100 kPa is 9215 kW, exceeding the value at 40 kPa by 42%, which is only 3900 kW. This peak heat release rate also demonstrates a power function relationship with ambient pressure. In addition, fires tend to last longer in lower pressure, where high-temperature areas expand and spread rates increase. Moreover, higher pressures produce elevated peak concentrations of CO and CO<sub>2</sub>, while smoke spreads faster in lower pressure, despite lower peak smoke concentrations. The study findings can serve as a foundation for assessing the fire hazards and designing fire protection measures for lithium-ion battery storage containers exposed to varying ambient pressures.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024002171","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As lithium-ion battery energy storage gains popularity and application at high altitudes, the evolution of fire risk in storage containers remains uncertain. In this study, numerical simulation is employed to investigate the fire characteristics of lithium-ion battery storage container under varying ambient pressures. The findings reveal that the peak heat release rate of fires at normal pressure is significantly higher than at lower pressure. Specifically, the heat release rate at 100 kPa is 9215 kW, exceeding the value at 40 kPa by 42%, which is only 3900 kW. This peak heat release rate also demonstrates a power function relationship with ambient pressure. In addition, fires tend to last longer in lower pressure, where high-temperature areas expand and spread rates increase. Moreover, higher pressures produce elevated peak concentrations of CO and CO2, while smoke spreads faster in lower pressure, despite lower peak smoke concentrations. The study findings can serve as a foundation for assessing the fire hazards and designing fire protection measures for lithium-ion battery storage containers exposed to varying ambient pressures.
环境压力对锂离子电池储能容器火灾特性的影响
随着锂离子电池储能在高海拔地区的普及和应用,储能容器的火灾风险演变仍具有不确定性。本研究采用数值模拟方法研究了锂离子电池储能容器在不同环境压力下的火灾特性。研究结果表明,常压下火灾的峰值热释放率明显高于低压下。具体来说,100 kPa 时的热释放率为 9215 kW,比 40 kPa 时的值高出 42%,后者仅为 3900 kW。这一峰值热释放率也表明了与环境压力之间的功率函数关系。此外,在较低气压下,火灾往往持续时间更长,高温区域扩大,蔓延速度加快。此外,较高的压力会产生较高的一氧化碳和二氧化碳峰值浓度,而在较低的压力下,尽管烟雾峰值浓度较低,但烟雾扩散速度较快。研究结果可作为评估锂离子电池储存容器在不同环境压力下的火灾危险和设计防火措施的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信