Deep learning for melt pool depth contour prediction from surface thermal images via vision transformers

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Francis Ogoke , Peter Pak , Alexander Myers , Guadalupe Quirarte , Jack Beuth , Jonathan Malen , Amir Barati Farimani
{"title":"Deep learning for melt pool depth contour prediction from surface thermal images via vision transformers","authors":"Francis Ogoke ,&nbsp;Peter Pak ,&nbsp;Alexander Myers ,&nbsp;Guadalupe Quirarte ,&nbsp;Jack Beuth ,&nbsp;Jonathan Malen ,&nbsp;Amir Barati Farimani","doi":"10.1016/j.addlet.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Anomalous melt pools during metal additive manufacturing (AM) can lead to deteriorated mechanical and fatigue performance. In-situ monitoring of the melt pool subsurface morphology requires specialized equipment that may not be readily accessible or scalable. Therefore, we introduce a machine learning framework to correlate in-situ two-color thermal images observed via high-speed color imaging to the two-dimensional profile of the melt pool cross-section. We employ a hybrid CNN-Transformer architecture to establish a correlation between single bead off-axis thermal image sequences and melt pool cross-section contours measured via optical microscopy. Specifically, a ResNet model embeds the spatial information contained within the thermal images to a latent vector, while a Transformer model correlates the sequence of embedded vectors to extract temporal information. The performance of this model is evaluated through dimensional and geometric comparisons to the corresponding experimental no-powder melt pool observations. Our framework is able to model the curvature of the subsurface melt pool structure, with improved performance in high energy density regimes compared to analytical models. Additionally, the use of ratiometric temperature estimates improves the accuracy of the model predictions compared to monochromatic imaging. This work establishes a framework extensible towards powder-based AM builds.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100243"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalous melt pools during metal additive manufacturing (AM) can lead to deteriorated mechanical and fatigue performance. In-situ monitoring of the melt pool subsurface morphology requires specialized equipment that may not be readily accessible or scalable. Therefore, we introduce a machine learning framework to correlate in-situ two-color thermal images observed via high-speed color imaging to the two-dimensional profile of the melt pool cross-section. We employ a hybrid CNN-Transformer architecture to establish a correlation between single bead off-axis thermal image sequences and melt pool cross-section contours measured via optical microscopy. Specifically, a ResNet model embeds the spatial information contained within the thermal images to a latent vector, while a Transformer model correlates the sequence of embedded vectors to extract temporal information. The performance of this model is evaluated through dimensional and geometric comparisons to the corresponding experimental no-powder melt pool observations. Our framework is able to model the curvature of the subsurface melt pool structure, with improved performance in high energy density regimes compared to analytical models. Additionally, the use of ratiometric temperature estimates improves the accuracy of the model predictions compared to monochromatic imaging. This work establishes a framework extensible towards powder-based AM builds.
通过视觉转换器进行深度学习,从表面热图像预测熔池深度轮廓
金属增材制造(AM)过程中的异常熔池会导致机械和疲劳性能下降。对熔池次表层形态进行原位监测需要专业设备,而这些设备可能不易获得或无法扩展。因此,我们引入了一个机器学习框架,将通过高速彩色成像观察到的原位双色热图像与熔池横截面的二维剖面图关联起来。我们采用混合 CNN-Transformer 架构,在单珠离轴热图像序列和通过光学显微镜测量的熔池横截面轮廓之间建立关联。具体来说,ResNet 模型将热图像中包含的空间信息嵌入潜在向量,而 Transformer 模型则将嵌入向量的序列关联起来,以提取时间信息。通过与相应的无粉熔池实验观测数据进行维度和几何比较,对该模型的性能进行了评估。我们的框架能够模拟地表下熔池结构的曲率,与分析模型相比,在高能量密度情况下性能更佳。此外,与单色成像相比,使用比率温度估算提高了模型预测的准确性。这项工作建立了一个框架,可扩展到基于粉末的 AM 制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信