Fluid overprints and mineralization of the Zhuguangshan granite-related U district in China: Recorded by cathodoluminescence textures and chemistry of quartz
Shen Gao , Yongjian Wang , Xinyu Zou , Edward L. Vinis , Liangliang Huang , Yi Tao , Jing Xu , Kezhang Qin , Zhengjie Qiu
{"title":"Fluid overprints and mineralization of the Zhuguangshan granite-related U district in China: Recorded by cathodoluminescence textures and chemistry of quartz","authors":"Shen Gao , Yongjian Wang , Xinyu Zou , Edward L. Vinis , Liangliang Huang , Yi Tao , Jing Xu , Kezhang Qin , Zhengjie Qiu","doi":"10.1016/j.oregeorev.2024.106256","DOIUrl":null,"url":null,"abstract":"<div><div>Most high-grade U ores are mined from quartz veins hosted in granites. The veins formed at shallow depths during episodic hydrothermal activity, however, the evolution of multiple stage fluids is not well constrained. In this study, we collected 56 quartz samples from the world-class, granite-related, Zhuguangshan U district (>17,000 t U from seven deposits) in southern China. Their textures and compositions were analyzed using scanning electron microscope cathodoluminescence (SEM-CL, <em>n</em> = 98) and laser ablation-induction coupled plasma-mass spectrometry (LA–ICP–MS, <em>n</em> = 643). Four types of quartz were identified, including magmatic quartz, early hydrothermal euhedral quartz, ore stage hydrothermal quartz (U-rich), and late hydrothermal quartz. New quartz textures and chemical compositions show that the transition of early hydrothermal quartz from the magmatic to hydrothermal stages is discontinuous, unlike the continuous trend observed in most magmatic-hydrothermal systems. Ore stage quartz is CL dark (with a peak at 650 nm), occurs as rims on early barren quartz, and has high contents of Mn, Al, and Sb. Altered textures of magmatic quartz developed through fluid-rock reactions at low temperatures, while rimmed textures of hydrothermal quartz formed during subsequent late-stage U-bearing fluid events, which played a crucial role in U mineralization. Quartz in the Zhuguangshan U district has distinct features compared to other magmatic-hydrothermal systems that can guide exploration for high-grade ore in this, and perhaps other, granite-related U systems.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824003895","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most high-grade U ores are mined from quartz veins hosted in granites. The veins formed at shallow depths during episodic hydrothermal activity, however, the evolution of multiple stage fluids is not well constrained. In this study, we collected 56 quartz samples from the world-class, granite-related, Zhuguangshan U district (>17,000 t U from seven deposits) in southern China. Their textures and compositions were analyzed using scanning electron microscope cathodoluminescence (SEM-CL, n = 98) and laser ablation-induction coupled plasma-mass spectrometry (LA–ICP–MS, n = 643). Four types of quartz were identified, including magmatic quartz, early hydrothermal euhedral quartz, ore stage hydrothermal quartz (U-rich), and late hydrothermal quartz. New quartz textures and chemical compositions show that the transition of early hydrothermal quartz from the magmatic to hydrothermal stages is discontinuous, unlike the continuous trend observed in most magmatic-hydrothermal systems. Ore stage quartz is CL dark (with a peak at 650 nm), occurs as rims on early barren quartz, and has high contents of Mn, Al, and Sb. Altered textures of magmatic quartz developed through fluid-rock reactions at low temperatures, while rimmed textures of hydrothermal quartz formed during subsequent late-stage U-bearing fluid events, which played a crucial role in U mineralization. Quartz in the Zhuguangshan U district has distinct features compared to other magmatic-hydrothermal systems that can guide exploration for high-grade ore in this, and perhaps other, granite-related U systems.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.