Semi-invariant Riemannian maps from Sasakian manifolds endowed with Ricci soliton structure

IF 1.6 3区 数学 Q1 MATHEMATICS
Adeeba Zaidi, Gauree Shanker
{"title":"Semi-invariant Riemannian maps from Sasakian manifolds endowed with Ricci soliton structure","authors":"Adeeba Zaidi,&nbsp;Gauree Shanker","doi":"10.1016/j.geomphys.2024.105330","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the behavior of semi-invariant Riemannian maps taking Sasakian structure as total manifolds satisfying Ricci soliton equation, to Riemannian manifolds. We establish necessary and sufficient conditions for the cases when fibers and <span><math><mi>r</mi><mi>a</mi><mi>n</mi><mi>g</mi><mi>e</mi><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> are Einstein. Further, we calculate scalar curvature for <span><math><mi>r</mi><mi>a</mi><mi>n</mi><mi>g</mi><mi>e</mi><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>, fibers and total manifolds. Also, we derive some inequalities for semi-invariant Riemannian maps from Sasakian space forms satisfying Ricci soliton equation, to Riemannian manifolds. We construct some examples in support of assumed maps.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002316","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the behavior of semi-invariant Riemannian maps taking Sasakian structure as total manifolds satisfying Ricci soliton equation, to Riemannian manifolds. We establish necessary and sufficient conditions for the cases when fibers and rangeF are Einstein. Further, we calculate scalar curvature for rangeF, fibers and total manifolds. Also, we derive some inequalities for semi-invariant Riemannian maps from Sasakian space forms satisfying Ricci soliton equation, to Riemannian manifolds. We construct some examples in support of assumed maps.
来自具有利玛窦孤子结构的萨萨基流形的半不变黎曼映射
在本文中,我们研究了以满足利玛窦孤子方程的总流形为萨萨结构的半不变黎曼映射到黎曼流形的行为。我们为纤维和范围F⁎是爱因斯坦的情况建立了必要条件和充分条件。此外,我们还计算了 rangeF⁎、纤维和总流形的标量曲率。此外,我们还推导了从满足利玛窦孤子方程的萨萨空间形式到黎曼流形的半不变黎曼映射的一些不等式。我们构建了一些实例来支持假定的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信