Probing the influence of synthesized hierarchical ZSM-5 catalyst in ex-situ catalytic conversion of real-world plastic waste into aromatic rich liquid oil
{"title":"Probing the influence of synthesized hierarchical ZSM-5 catalyst in ex-situ catalytic conversion of real-world plastic waste into aromatic rich liquid oil","authors":"","doi":"10.1016/j.joei.2024.101853","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic waste management has become a vitally important environmental and economic concern for researchers and technologists worldwide. Currently, catalytic pyrolysis of plastic waste emerged as a promising plastic waste management technique, further aiding the full-scale development of an alternate innovation to convert plastic waste into fuel (liquid oil) energy. Lately, zeolites have been one of the most suitable and versatile catalysts in converting plastic waste into fuel grade hydrocarbons via catalytic pyrolysis. The present work exhibits an attempt to synthesize and study the performance of a hierarchical ZSM-5 in a fixed bed reactor to convert the real-world (LDPE, HDPE, PP and PS) plastic wastes into higher quality fuel grade liquid oil. The hierarchical ZSM-5 catalyst having both mesopores and micropores (dual porosity) in its framework is synthesized by using a single organic template i.e., 10 % tetra propylammonium hydroxide (TPAOH). The catalyst performance study displays remarkable selectivity and increase in the yield of the aromatic component in the liquid oil obtained from different plastic wastes. The results indicate that presence of hierarchical catalyst has exceptionally lowered the reaction temperature in the range of 400–430 °C and increased the liquid oil yield in comparison with that of the thermal pyrolysis. Also, the obtained liquid oils have comparable fuel properties with that of kerosene and diesel.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003313","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic waste management has become a vitally important environmental and economic concern for researchers and technologists worldwide. Currently, catalytic pyrolysis of plastic waste emerged as a promising plastic waste management technique, further aiding the full-scale development of an alternate innovation to convert plastic waste into fuel (liquid oil) energy. Lately, zeolites have been one of the most suitable and versatile catalysts in converting plastic waste into fuel grade hydrocarbons via catalytic pyrolysis. The present work exhibits an attempt to synthesize and study the performance of a hierarchical ZSM-5 in a fixed bed reactor to convert the real-world (LDPE, HDPE, PP and PS) plastic wastes into higher quality fuel grade liquid oil. The hierarchical ZSM-5 catalyst having both mesopores and micropores (dual porosity) in its framework is synthesized by using a single organic template i.e., 10 % tetra propylammonium hydroxide (TPAOH). The catalyst performance study displays remarkable selectivity and increase in the yield of the aromatic component in the liquid oil obtained from different plastic wastes. The results indicate that presence of hierarchical catalyst has exceptionally lowered the reaction temperature in the range of 400–430 °C and increased the liquid oil yield in comparison with that of the thermal pyrolysis. Also, the obtained liquid oils have comparable fuel properties with that of kerosene and diesel.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.