{"title":"Optimal representation of tree foliage for local urban climate modeling","authors":"Adrien Rodriguez , Bastien Lecigne , Sylvia Wood , Jan Carmeliet , Aytaç Kubilay , Dominique Derome","doi":"10.1016/j.scs.2024.105857","DOIUrl":null,"url":null,"abstract":"<div><div>Trees impact the local urban climate, notably at street level by intercepting solar radiation and providing shading. Evapotranspiration in foliage may reduce the air temperature although it may increase relative humidity and leaf drag may reduce wind speed, affecting thermal comfort. To document and quantify this impact, microclimate modeling with Computational Fluid Dynamics (CFD) simulations requires explicit information of the urban configuration, including trees. However, trees are complex individuals with a variety of shapes and a variety of foliage distribution. This study aims to investigate the sensibility to the tree modeling of the urban climate simulations. Starting with terrestrial LiDAR data from trees of different species, ages, and forms, we propose a systematic evaluation of the optimal representation of arboreal configurations in terms of local urban comfort. One way to represent the foliage of trees accurately is to apply Delaunay triangulation on the LiDAR data, which yields a convex envelope model. The resulting foliage shape is very close to the actual tree, but includes a high number of facets leading to complex objects to model numerically. Comparing four species and three maturity level of trees with this method, the paper shows that the size of the zone shadowed by a tree is the parameter with the largest impact on thermal comfort, as the ability of trees to absorb solar radiation is the main asset to improve thermal comfort. The UTCI could be up to 2.1°C lower for a mature ACPL than for a sapling, mainly because the zone covered by the tree is larger. In addition, polyhedron shape rhombicuboctahedron (RBC) produces accurate shadowed zones. Mostly, in literature, tree canopies are modeled with cubic representations while we see that they overestimate the size of the shadowed zone. To have reliable compromise between accuracy and time for conception and computational time, this paper shows that the RBC is the best alternative to common tree models. Despite requiring a good knowledge of the canopy geometry, RBC provides a strong capacity for accurately modelling complex canopy shapes of most tree species and offers large benefits in reduced complexity. We show that the RBC shape, thanks to its simple but flexible geometry, is an efficient and accurate methodological approach to model trees and allows savings in computational time (up to 15% faster than the convex envelope) and costs; and we expect that this method will improve the modeling of further parametric studies on vegetation impact on thermal urban comfort.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724006814","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trees impact the local urban climate, notably at street level by intercepting solar radiation and providing shading. Evapotranspiration in foliage may reduce the air temperature although it may increase relative humidity and leaf drag may reduce wind speed, affecting thermal comfort. To document and quantify this impact, microclimate modeling with Computational Fluid Dynamics (CFD) simulations requires explicit information of the urban configuration, including trees. However, trees are complex individuals with a variety of shapes and a variety of foliage distribution. This study aims to investigate the sensibility to the tree modeling of the urban climate simulations. Starting with terrestrial LiDAR data from trees of different species, ages, and forms, we propose a systematic evaluation of the optimal representation of arboreal configurations in terms of local urban comfort. One way to represent the foliage of trees accurately is to apply Delaunay triangulation on the LiDAR data, which yields a convex envelope model. The resulting foliage shape is very close to the actual tree, but includes a high number of facets leading to complex objects to model numerically. Comparing four species and three maturity level of trees with this method, the paper shows that the size of the zone shadowed by a tree is the parameter with the largest impact on thermal comfort, as the ability of trees to absorb solar radiation is the main asset to improve thermal comfort. The UTCI could be up to 2.1°C lower for a mature ACPL than for a sapling, mainly because the zone covered by the tree is larger. In addition, polyhedron shape rhombicuboctahedron (RBC) produces accurate shadowed zones. Mostly, in literature, tree canopies are modeled with cubic representations while we see that they overestimate the size of the shadowed zone. To have reliable compromise between accuracy and time for conception and computational time, this paper shows that the RBC is the best alternative to common tree models. Despite requiring a good knowledge of the canopy geometry, RBC provides a strong capacity for accurately modelling complex canopy shapes of most tree species and offers large benefits in reduced complexity. We show that the RBC shape, thanks to its simple but flexible geometry, is an efficient and accurate methodological approach to model trees and allows savings in computational time (up to 15% faster than the convex envelope) and costs; and we expect that this method will improve the modeling of further parametric studies on vegetation impact on thermal urban comfort.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;