Conjugate points along spherical harmonics

IF 1.6 3区 数学 Q1 MATHEMATICS
Ali Suri
{"title":"Conjugate points along spherical harmonics","authors":"Ali Suri","doi":"10.1016/j.geomphys.2024.105333","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing structure constants, we present a version of the Misiolek criterion for identifying conjugate points. We propose an approach that enables us to locate these points along solutions of the quasi-geostrophic equations on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We demonstrate that for any spherical harmonics <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi><mi>m</mi></mrow></msub></math></span> with <span><math><mn>1</mn><mo>≤</mo><mo>|</mo><mi>m</mi><mo>|</mo><mo>≤</mo><mi>l</mi></math></span>, except for <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>1</mn><mo>±</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn><mo>±</mo><mn>1</mn></mrow></msub></math></span>, conjugate points can be determined along the solution generated by the velocity field <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>l</mi><mi>m</mi></mrow></msub><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mo>⊥</mo></mrow></msup><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi><mi>m</mi></mrow></msub></math></span>. Subsequently, we investigate the impact of the Coriolis force on the occurrence of conjugate points. Moreover, for any zonal flow generated by the velocity field <span><math><msup><mrow><mi>∇</mi></mrow><mrow><mo>⊥</mo></mrow></msup><msub><mrow><mi>Y</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mspace></mspace><mn>0</mn></mrow></msub></math></span>, we demonstrate that proper rotation rate can lead to the appearance of conjugate points along the corresponding solution, where <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>.</mo><mo>∈</mo><mi>N</mi></math></span> Additionally, we prove the existence of conjugate points along (complex) Rossby-Haurwitz waves and explore the effect of the Coriolis force on their stability.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing structure constants, we present a version of the Misiolek criterion for identifying conjugate points. We propose an approach that enables us to locate these points along solutions of the quasi-geostrophic equations on the sphere S2. We demonstrate that for any spherical harmonics Ylm with 1|m|l, except for Y1±1 and Y2±1, conjugate points can be determined along the solution generated by the velocity field elm=Ylm. Subsequently, we investigate the impact of the Coriolis force on the occurrence of conjugate points. Moreover, for any zonal flow generated by the velocity field Yl10, we demonstrate that proper rotation rate can lead to the appearance of conjugate points along the corresponding solution, where l1=2k+1.N Additionally, we prove the existence of conjugate points along (complex) Rossby-Haurwitz waves and explore the effect of the Coriolis force on their stability.
沿球面谐波的共轭点
利用结构常数,我们提出了一种用于识别共轭点的米西奥列克准则。我们提出了一种方法,使我们能够沿着球面 S2 上准地心吸力方程的解来定位这些点。我们证明,对于 1≤|m|≤l 的任何球面谐波 Ylm,除了 Y1±1 和 Y2±1,共轭点都可以沿着由速度场 elm=∇⊥Ylm 生成的解确定。随后,我们研究了科里奥利力对共轭点出现的影响。此外,对于由速度场∇⊥Yl10 产生的任何带状流,我们证明了适当的旋转率可导致沿相应解出现共轭点,其中 l1=2k+1.∈N 此外,我们还证明了沿(复)罗斯比-霍尔维茨波共轭点的存在,并探讨了科里奥利力对其稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信