Pseudo-Euclidean Novikov algebras of arbitrary signature

IF 1.6 3区 数学 Q1 MATHEMATICS
Mohamed Boucetta , Hamza El Ouali , Hicham Lebzioui
{"title":"Pseudo-Euclidean Novikov algebras of arbitrary signature","authors":"Mohamed Boucetta ,&nbsp;Hamza El Ouali ,&nbsp;Hicham Lebzioui","doi":"10.1016/j.geomphys.2024.105334","DOIUrl":null,"url":null,"abstract":"<div><div>A pseudo-Euclidean Novikov algebra <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is a Novikov algebra <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>)</mo></math></span> endowed with a non-degenerate symmetric bilinear form such that left multiplications are skew-symmetric. If <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span> is of signature <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> then <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is called a Lorentzian Novikov algebra. In (H. Lebzioui, 2020 <span><span>[11]</span></span>), the author studied Lorentzian Novikov algebras and showed that a Lorentzian Novikov algebra is transitive. In this paper, we study pseudo-Euclidean Novikov algebras in the general case, where <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span> is of arbitrary signature. We show that a pseudo-Euclidean Novikov algebra of arbitrary signature must be transitive and the associated Lie algebra is two-solvable. This implies that a flat left-invariant pseudo-Riemannian metric on a corresponding Lie group is geodesically complete. We show that if <span><math><mo>(</mo><mi>g</mi><mo>,</mo><mo>•</mo><mo>,</mo><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo><mo>)</mo></math></span> is a pseudo-Euclidean Novikov algebra such that <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is non-degenerate then the underlying Lie algebra is a Milnor Lie algebra; that is <span><math><mi>g</mi><mo>=</mo><mi>b</mi><mo>⊕</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>, where <span><math><mi>b</mi></math></span> is a sub-Lie algebra, <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is a sub-Lie ideal and <span><math><msub><mrow><mi>ad</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is <span><math><mo>〈</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>〉</mo></math></span>-skew symmetric for any <span><math><mi>b</mi><mo>∈</mo><mi>b</mi></math></span>. If <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is degenerate, then we show that we can obtain the pseudo-Euclidean Novikov algebra through a double extension process starting from a Milnor Lie algebra. Finally, as applications, we classify all pseudo-Euclidean Novikov algebras of dimension ≤5 such that <span><math><mi>g</mi><mo>•</mo><mi>g</mi></math></span> is degenerate.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002353","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A pseudo-Euclidean Novikov algebra (g,,,) is a Novikov algebra (g,) endowed with a non-degenerate symmetric bilinear form such that left multiplications are skew-symmetric. If , is of signature (1,n1) then (g,,,) is called a Lorentzian Novikov algebra. In (H. Lebzioui, 2020 [11]), the author studied Lorentzian Novikov algebras and showed that a Lorentzian Novikov algebra is transitive. In this paper, we study pseudo-Euclidean Novikov algebras in the general case, where , is of arbitrary signature. We show that a pseudo-Euclidean Novikov algebra of arbitrary signature must be transitive and the associated Lie algebra is two-solvable. This implies that a flat left-invariant pseudo-Riemannian metric on a corresponding Lie group is geodesically complete. We show that if (g,,,) is a pseudo-Euclidean Novikov algebra such that gg is non-degenerate then the underlying Lie algebra is a Milnor Lie algebra; that is g=bb, where b is a sub-Lie algebra, b is a sub-Lie ideal and adb is ,-skew symmetric for any bb. If gg is degenerate, then we show that we can obtain the pseudo-Euclidean Novikov algebra through a double extension process starting from a Milnor Lie algebra. Finally, as applications, we classify all pseudo-Euclidean Novikov algebras of dimension ≤5 such that gg is degenerate.
任意签名的伪欧几里得诺维科夫布拉
伪欧几里得诺维可夫代数(g,-,〈,〉)是一个具有非退化对称双线性形式的诺维可夫代数(g,-),其左乘法是偏斜对称的。如果〈,〉的签名为 (1,n-1),那么〈g,-,〈,〉) 称为洛伦兹诺维可夫代数。在(H. Lebzioui, 2020 [11])中,作者研究了洛伦兹诺维可夫代数,并证明了洛伦兹诺维可夫代数是可传递的。在本文中,我们研究了一般情况下的〈,〉为任意签名的伪欧几里得诺维科夫代数。我们证明了任意签名的伪欧几里得诺维可夫代数必须是传递的,并且相关的李代数是可二解的。这意味着在相应的李群上的平面左不变伪黎曼度量是大地完全的。我们证明,如果(g,-,〈,〉)是一个伪欧几里得诺维可夫代数,且 g-g 是非退化的,那么底层的李代数就是米尔诺李代数;即 g=b⊕b⊥,其中 b 是一个子列代数,b⊥是一个子列理想,且 adb 对任意 b∈b 都是〈,〉斜对称的。如果 g-g 是退化的,那么我们证明可以通过从米尔诺列代数开始的双重扩展过程得到伪欧几里得诺维科夫代数。最后,作为应用,我们对所有维数≤5、且 g-g 退化的伪欧几里得诺维可夫代数进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信