An m-adic algorithm for bivariate Gröbner bases

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Éric Schost , Catherine St-Pierre
{"title":"An m-adic algorithm for bivariate Gröbner bases","authors":"Éric Schost ,&nbsp;Catherine St-Pierre","doi":"10.1016/j.jsc.2024.102389","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>A</mi></math></span> be a domain, with <span><math><mi>m</mi><mo>⊆</mo><mi>A</mi></math></span> a maximal ideal, and let <span><math><mi>F</mi><mo>⊆</mo><mi>A</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></math></span> be any finite generating set of an ideal with finitely many roots (in an algebraic closure of the fraction field <span><math><mi>K</mi></math></span> of <span><math><mi>A</mi></math></span>). We present a randomized <span><math><mi>m</mi></math></span>-adic algorithm to recover the lexicographic Gröbner basis <span><math><mi>G</mi></math></span> of <span><math><mo>〈</mo><mi>F</mi><mo>〉</mo><mo>⊆</mo><mi>K</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></math></span>, or of its primary component at the origin. We observe that previous results of Lazard's that use Hermite normal forms to compute Gröbner bases for ideals with two generators can be generalized to a generating set <span><math><mi>F</mi></math></span> of cardinality greater than two. We use this result to bound the size of the coefficients of <span><math><mi>G</mi></math></span>, and to control the probability of choosing a <em>good</em> maximal ideal <span><math><mi>m</mi><mo>⊆</mo><mi>A</mi></math></span>. We give a complete cost analysis over number fields (<span><math><mi>K</mi><mo>=</mo><mi>Q</mi><mo>(</mo><mi>α</mi><mo>)</mo></math></span>) and function fields (<figure><img></figure>), and we obtain a complexity that is less than cubic in terms of the dimension of <span><math><mi>K</mi><mo>/</mo><mo>〈</mo><mi>G</mi><mo>〉</mo></math></span> and softly linear in the size of its coefficients.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000932","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a domain, with mA a maximal ideal, and let FA[x,y] be any finite generating set of an ideal with finitely many roots (in an algebraic closure of the fraction field K of A). We present a randomized m-adic algorithm to recover the lexicographic Gröbner basis G of FK[x,y], or of its primary component at the origin. We observe that previous results of Lazard's that use Hermite normal forms to compute Gröbner bases for ideals with two generators can be generalized to a generating set F of cardinality greater than two. We use this result to bound the size of the coefficients of G, and to control the probability of choosing a good maximal ideal mA. We give a complete cost analysis over number fields (K=Q(α)) and function fields (
), and we obtain a complexity that is less than cubic in terms of the dimension of K/G and softly linear in the size of its coefficients.
二元格氏基的 m-adic 算法
设 A 是一个域,m⊆A 是一个最大理想,设 F⊆A[x,y]是具有有限多个根(在 A 的分数域 K 的代数闭包中)的理想的任意有限生成集。我们提出了一种随机 m-adic 算法来恢复〈F〉⊆K[x,y]的词典格罗伯纳基 G 或其在原点的主成分。我们注意到,拉扎德之前利用赫米特正则表达式计算有两个生成子的理想的格罗伯纳基的结果,可以推广到心数大于两个的生成集 F。我们利用这一结果来约束 G 的系数大小,并控制选择一个好的最大理想 m⊆A 的概率。我们对数域(K=Q(α))和函数域()进行了完整的代价分析,得到的复杂度小于 K/〈G〉维数的立方,与其系数的大小呈软线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信