Mixed virtual element methods for the poro-elastodynamics model on polygonal grids

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanli Chen , Xin Liu , Wenhui Zhang , Yufeng Nie
{"title":"Mixed virtual element methods for the poro-elastodynamics model on polygonal grids","authors":"Yanli Chen ,&nbsp;Xin Liu ,&nbsp;Wenhui Zhang ,&nbsp;Yufeng Nie","doi":"10.1016/j.camwa.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces and analyzes the mixed virtual element method on polygonal meshes for the numerical discretization of poro-elastodynamics models. For spatial discretization, we employ the mixed virtual element method on polygonal meshes, coupled with Newmark-<em>β</em> integration schemes for time discretization. We present a stability analysis for both the continuous and semi-discrete problems and derive error estimates for the energy norm in the semi-discrete case. Numerical experiments are conducted to verify the theoretical analysis, and the results on Voronoi meshes demonstrate that the algorithm effectively handles various dynamic viscosities.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004334","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces and analyzes the mixed virtual element method on polygonal meshes for the numerical discretization of poro-elastodynamics models. For spatial discretization, we employ the mixed virtual element method on polygonal meshes, coupled with Newmark-β integration schemes for time discretization. We present a stability analysis for both the continuous and semi-discrete problems and derive error estimates for the energy norm in the semi-discrete case. Numerical experiments are conducted to verify the theoretical analysis, and the results on Voronoi meshes demonstrate that the algorithm effectively handles various dynamic viscosities.
多边形网格上孔隙-弹性力学模型的混合虚拟元素方法
本研究介绍并分析了多边形网格上的混合虚拟元素法,用于孔-弹性力学模型的数值离散化。在空间离散化方面,我们采用多边形网格上的混合虚拟元素法,并结合 Newmark-β 积分方案进行时间离散化。我们对连续和半离散问题进行了稳定性分析,并得出了半离散情况下能量规范的误差估计值。我们进行了数值实验来验证理论分析,在 Voronoi 网格上的结果表明,该算法能有效处理各种动态粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信