A posteriori error estimates of Darcy flows with Robin-type jump interface conditions

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jeonghun J. Lee
{"title":"A posteriori error estimates of Darcy flows with Robin-type jump interface conditions","authors":"Jeonghun J. Lee","doi":"10.1016/j.camwa.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz-type decomposition and an interface-adapted Scott–Zhang type interpolation operator. A local efficiency and the reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using our estimator are included.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz-type decomposition and an interface-adapted Scott–Zhang type interpolation operator. A local efficiency and the reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using our estimator are included.
具有罗宾型跃迁界面条件的达西流的后验误差估计
在这项研究中,我们开发了一种后验误差估算器,适用于具有罗宾型跃迁界面条件的达西流问题的混合有限元方法。我们利用斯腾伯格后处理方法构建了一个能量正态类型的后验误差估计器。利用界面适应的 Helmholtz 型分解和界面适应的 Scott-Zhang 型插值算子证明了估计器的可靠性。此外,还证明了后处理压力的局部效率和可靠性。还包括使用我们的估算器说明自适应算法的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信