{"title":"Disjoint path covers of star graphs","authors":"Hongwei Qiao, Jixiang Meng","doi":"10.1016/j.amc.2024.129098","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, let <em>S</em> and <em>T</em> be two vertex-disjoint subsets of equal size <em>k</em> of <em>G</em>. A <em>k</em>-disjoint path cover of <em>G</em> corresponding to <em>S</em> and <em>T</em> is the union of <em>k</em> vertex-disjoint paths among <em>S</em> and <em>T</em> that spans <em>G</em>. If every vertex of <em>S</em> should be joined to a prescribed vertex in <em>T</em>, it is defined to be paired, otherwise it is unpaired. Let <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a star graph with bipartition <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Let <span><math><mi>S</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>T</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> be two vertex subsets of equal size <em>k</em>. It is shown in this paper that <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> admits an unpaired <em>k</em>-disjoint path cover between <em>S</em> and <em>T</em>, where <span><math><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. In view of the degree of <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, this result is optimal.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G, let S and T be two vertex-disjoint subsets of equal size k of G. A k-disjoint path cover of G corresponding to S and T is the union of k vertex-disjoint paths among S and T that spans G. If every vertex of S should be joined to a prescribed vertex in T, it is defined to be paired, otherwise it is unpaired. Let be a star graph with bipartition and . Let and be two vertex subsets of equal size k. It is shown in this paper that admits an unpaired k-disjoint path cover between S and T, where and . In view of the degree of , this result is optimal.
给定一个图 G,设 S 和 T 是 G 的两个大小相等的 k 个顶点相交子集。与 S 和 T 相对应的 G 的 k 个相交路径覆盖是 S 和 T 之间跨越 G 的 k 个顶点相交路径的联合。假设 STn 是一个星形图,具有双分区 V0 和 V1。本文证明了 STn 在 S 和 T 之间允许一个非配对的 k 叉路径覆盖,其中 k≤n-2 且 n≥4。考虑到 STn 的度数,这一结果是最优的。