Disjoint path covers of star graphs

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongwei Qiao, Jixiang Meng
{"title":"Disjoint path covers of star graphs","authors":"Hongwei Qiao,&nbsp;Jixiang Meng","doi":"10.1016/j.amc.2024.129098","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <em>G</em>, let <em>S</em> and <em>T</em> be two vertex-disjoint subsets of equal size <em>k</em> of <em>G</em>. A <em>k</em>-disjoint path cover of <em>G</em> corresponding to <em>S</em> and <em>T</em> is the union of <em>k</em> vertex-disjoint paths among <em>S</em> and <em>T</em> that spans <em>G</em>. If every vertex of <em>S</em> should be joined to a prescribed vertex in <em>T</em>, it is defined to be paired, otherwise it is unpaired. Let <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be a star graph with bipartition <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Let <span><math><mi>S</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><mi>T</mi><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> be two vertex subsets of equal size <em>k</em>. It is shown in this paper that <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> admits an unpaired <em>k</em>-disjoint path cover between <em>S</em> and <em>T</em>, where <span><math><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. In view of the degree of <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, this result is optimal.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph G, let S and T be two vertex-disjoint subsets of equal size k of G. A k-disjoint path cover of G corresponding to S and T is the union of k vertex-disjoint paths among S and T that spans G. If every vertex of S should be joined to a prescribed vertex in T, it is defined to be paired, otherwise it is unpaired. Let STn be a star graph with bipartition V0 and V1. Let SV0 and TV1 be two vertex subsets of equal size k. It is shown in this paper that STn admits an unpaired k-disjoint path cover between S and T, where kn2 and n4. In view of the degree of STn, this result is optimal.
星形图的相邻路径覆盖
给定一个图 G,设 S 和 T 是 G 的两个大小相等的 k 个顶点相交子集。与 S 和 T 相对应的 G 的 k 个相交路径覆盖是 S 和 T 之间跨越 G 的 k 个顶点相交路径的联合。假设 STn 是一个星形图,具有双分区 V0 和 V1。本文证明了 STn 在 S 和 T 之间允许一个非配对的 k 叉路径覆盖,其中 k≤n-2 且 n≥4。考虑到 STn 的度数,这一结果是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信