Data-driven predictor of control-affine nonlinear dynamics: Finite discrete-time bilinear approximation of koopman operator

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sara Iman, Mohammad-Reza Jahed-Motlagh
{"title":"Data-driven predictor of control-affine nonlinear dynamics: Finite discrete-time bilinear approximation of koopman operator","authors":"Sara Iman,&nbsp;Mohammad-Reza Jahed-Motlagh","doi":"10.1016/j.amc.2024.129068","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel and efficient data-driven approach for approximating a finite discrete-time bilinear model of control affine nonlinear dynamical systems with a tunable parameter that balances model dimension and prediction accuracy. An approximation of the Koopman operator based on the evolutions of the nonlinear system measurements used to lift a control-affine nonlinear system to a higher dimensional model. However, higher dimensional spaces can result in a long learning time and the curse of dimensionality in control analysis. The proposed approach addresses these challenges by introducing a convex optimization which identifies informative observable functions. This technique allows for the adjustment of a parameter to strike a balance between model dimension and accuracy in prediction. The main contribution of this study is to introduce a reduced dimensional bilinear model for a nonlinear complex system. This achievement is made possible by implementing convex sparse optimization, enabling the exploration of informative estimated Koopman eigenfunctions while minimizing the number of system measurements required. The optimization problem is solved using the alternating direction method of multipliers. The effectiveness of the proposed method is evaluated on three different nonlinear systems: a numerical nonlinear system, a Van der Pol oscillator, and a Duffing oscillator. In the last simulation, an estimation of the Koopman linear model is considered as a special case, and the policy iteration algorithm is employed to evaluate optimal control designed for different reduced-dimensional models.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005290","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel and efficient data-driven approach for approximating a finite discrete-time bilinear model of control affine nonlinear dynamical systems with a tunable parameter that balances model dimension and prediction accuracy. An approximation of the Koopman operator based on the evolutions of the nonlinear system measurements used to lift a control-affine nonlinear system to a higher dimensional model. However, higher dimensional spaces can result in a long learning time and the curse of dimensionality in control analysis. The proposed approach addresses these challenges by introducing a convex optimization which identifies informative observable functions. This technique allows for the adjustment of a parameter to strike a balance between model dimension and accuracy in prediction. The main contribution of this study is to introduce a reduced dimensional bilinear model for a nonlinear complex system. This achievement is made possible by implementing convex sparse optimization, enabling the exploration of informative estimated Koopman eigenfunctions while minimizing the number of system measurements required. The optimization problem is solved using the alternating direction method of multipliers. The effectiveness of the proposed method is evaluated on three different nonlinear systems: a numerical nonlinear system, a Van der Pol oscillator, and a Duffing oscillator. In the last simulation, an estimation of the Koopman linear model is considered as a special case, and the policy iteration algorithm is employed to evaluate optimal control designed for different reduced-dimensional models.
控制-非线性非线性动力学的数据驱动预测器:库普曼算子的有限离散时间双线性近似值
本文介绍了一种新颖、高效的数据驱动方法,利用一个可调参数来近似控制仿射非线性动态系统的有限离散时间双线性模型,从而在模型维度和预测精度之间取得平衡。基于非线性系统测量演化的 Koopman 算子近似值用于将控制仿射非线性系统提升到高维模型。然而,高维空间会导致学习时间过长,以及控制分析中的维度诅咒。所提出的方法通过引入凸优化来确定信息可观测函数,从而解决了这些难题。这种技术可以调整参数,在模型维度和预测精度之间取得平衡。本研究的主要贡献在于为非线性复杂系统引入了一个降维双线性模型。这一成果是通过实施凸稀疏优化得以实现的,在最大限度减少所需的系统测量次数的同时,还能探索信息丰富的估计 Koopman 特征函数。优化问题采用交替乘法求解。我们在三个不同的非线性系统上评估了所提方法的有效性:一个数值非线性系统、一个范德波尔振荡器和一个达芬振荡器。在最后一个仿真中,库普曼线性模型的估计被视为一个特例,并采用策略迭代算法来评估为不同降维模型设计的最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信