Stokes phenomenon for the M-Wright function of order 1n

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hassan Askari, Alireza Ansari
{"title":"Stokes phenomenon for the M-Wright function of order 1n","authors":"Hassan Askari,&nbsp;Alireza Ansari","doi":"10.1016/j.amc.2024.129088","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, using the higher-order differential equation of M-Wright function (Mainardi function) of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we get the integral representations for this function and other linear independent functions on the Laplace contours. The Stokes phenomenon and the Stokes/anti-Stokes rays for different domains in the complex plane are also investigated. Our approach is based on the steepest descent method for analyzing and drawing the steepest descent curves/directions for the initial values of <em>n</em>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005496","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, using the higher-order differential equation of M-Wright function (Mainardi function) of order 1n,n3, we get the integral representations for this function and other linear independent functions on the Laplace contours. The Stokes phenomenon and the Stokes/anti-Stokes rays for different domains in the complex plane are also investigated. Our approach is based on the steepest descent method for analyzing and drawing the steepest descent curves/directions for the initial values of n.
阶次为 1n 的 M-赖特函数的斯托克斯现象
本文利用阶数为 1n,n≥3 的 M-赖特函数(Mainardi 函数)的高阶微分方程,得到了该函数和其他线性独立函数在拉普拉斯等值线上的积分表示。我们还研究了复平面内不同域的斯托克斯现象和斯托克斯/反斯托克斯射线。我们的方法基于最陡下降法,用于分析和绘制 n 初始值的最陡下降曲线/方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信