{"title":"A systematic review of abiotic factors influencing the production of plant cell wall-degrading enzymes in Botryosphaeriaceae","authors":"Julián D. Restrepo-Leal , Florence Fontaine , Caroline Rémond , Olivier Fernandez , Ludovic Besaury","doi":"10.1016/j.fbr.2024.100395","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>Botryosphaeriaceae</em> family includes many worldwide fungal pathogens of economically important woody plants. To penetrate and colonize the host, the <em>Botryosphaeriaceae</em> species utilize a diverse array of Plant Cell Wall-Degrading Enzymes (PCWDEs) that deconstruct the main plant cell wall polymers, <em>i.e.,</em> cellulose, hemicelluloses, pectins, and lignins. Although the PCWDEs play an essential role in pathogenicity, little has been done to understand the effect of environmental factors on their production in <em>Botryosphaeriaceae</em>. To explore the main factors influencing PCWDE production in <em>Botryosphaeriaceae</em> species, we performed a systematic search in literature databases, identifying all the existing studies reporting lignocellulolytic and pectinolytic enzyme activities. Sixty-two articles met the inclusion criteria and were included in a meta-analysis of the carbon and nitrogen source effects on the production of laccase, cellulase, xylanase, and polygalacturonase activities. Our results show that poorly-lignified plant cell walls rich in polysaccharides and nitrates enhance PCWDE titers in <em>Botryosphaeriaceae</em>. We also discuss the influence of other abiotic factors, such as temperature, pH, metal ions, moisture content, and surfactants. This review may be helpful for future works that aim to increase knowledge on the PCWDE regulation in the <em>Botryosphaeriaceae</em> family.</div></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"50 ","pages":"Article 100395"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174946132400040X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Botryosphaeriaceae family includes many worldwide fungal pathogens of economically important woody plants. To penetrate and colonize the host, the Botryosphaeriaceae species utilize a diverse array of Plant Cell Wall-Degrading Enzymes (PCWDEs) that deconstruct the main plant cell wall polymers, i.e., cellulose, hemicelluloses, pectins, and lignins. Although the PCWDEs play an essential role in pathogenicity, little has been done to understand the effect of environmental factors on their production in Botryosphaeriaceae. To explore the main factors influencing PCWDE production in Botryosphaeriaceae species, we performed a systematic search in literature databases, identifying all the existing studies reporting lignocellulolytic and pectinolytic enzyme activities. Sixty-two articles met the inclusion criteria and were included in a meta-analysis of the carbon and nitrogen source effects on the production of laccase, cellulase, xylanase, and polygalacturonase activities. Our results show that poorly-lignified plant cell walls rich in polysaccharides and nitrates enhance PCWDE titers in Botryosphaeriaceae. We also discuss the influence of other abiotic factors, such as temperature, pH, metal ions, moisture content, and surfactants. This review may be helpful for future works that aim to increase knowledge on the PCWDE regulation in the Botryosphaeriaceae family.
期刊介绍:
Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.