Error estimates of time discretizations for a Cahn-Hilliard phase-field model for the two-phase magnetohydrodynamic flows

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaojuan Shen, Yongyong Cai
{"title":"Error estimates of time discretizations for a Cahn-Hilliard phase-field model for the two-phase magnetohydrodynamic flows","authors":"Xiaojuan Shen,&nbsp;Yongyong Cai","doi":"10.1016/j.apnum.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a rigorous error analysis for two weakly decoupled, unconditionally energy stable schemes in the semi-discrete-in-time form. The methods consist of a stabilized/convex-splitting method for the phase field equations and a projection correction method for the MHD model. Several numerical simulations demonstrate the validity of theoretical results.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 585-607"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002642","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a rigorous error analysis for two weakly decoupled, unconditionally energy stable schemes in the semi-discrete-in-time form. The methods consist of a stabilized/convex-splitting method for the phase field equations and a projection correction method for the MHD model. Several numerical simulations demonstrate the validity of theoretical results.
两相磁流体流的卡恩-希利亚德相场模型时间离散化的误差估计
在本文中,我们以半离散实时形式对两种弱解耦无条件能量稳定方案进行了严格的误差分析。这两种方法包括相场方程的稳定/凸分法和 MHD 模型的投影校正法。一些数值模拟证明了理论结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信