A general alternating-direction implicit Newton method for solving continuous-time algebraic Riccati equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kai Jiang, Shifeng Li, Juan Zhang
{"title":"A general alternating-direction implicit Newton method for solving continuous-time algebraic Riccati equation","authors":"Kai Jiang,&nbsp;Shifeng Li,&nbsp;Juan Zhang","doi":"10.1016/j.apnum.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>The complex continuous-time algebraic Riccati equation (CCARE) is quadratic, which is closely related to the analysis of the optimal control problem. In this paper, we apply Newton method as the outer iteration and an efficient general alternating-direction implicit (GADI) method as the inner iteration to solve CCARE. Meanwhile, we propose the inexact Newton-GADI method to further improve the efficiency of the algorithm. We give the convergence analysis of our proposed method and prove that its convergence rate is faster than the classical Newton-ADI method. Finally, some numerical examples are given to illustrate the effectiveness of our algorithms and the correctness of the theoretical analysis.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex continuous-time algebraic Riccati equation (CCARE) is quadratic, which is closely related to the analysis of the optimal control problem. In this paper, we apply Newton method as the outer iteration and an efficient general alternating-direction implicit (GADI) method as the inner iteration to solve CCARE. Meanwhile, we propose the inexact Newton-GADI method to further improve the efficiency of the algorithm. We give the convergence analysis of our proposed method and prove that its convergence rate is faster than the classical Newton-ADI method. Finally, some numerical examples are given to illustrate the effectiveness of our algorithms and the correctness of the theoretical analysis.
求解连续时间代数里卡提方程的一般交替方向隐式牛顿法
复杂连续时间代数里卡提方程(CCARE)是二次方程,与最优控制问题的分析密切相关。本文以牛顿法为外迭代,以高效的一般交替方向隐式(GADI)法为内迭代,求解 CCARE。同时,我们提出了不精确牛顿-GADI 方法,以进一步提高算法的效率。我们给出了所提方法的收敛性分析,并证明其收敛速度比经典的牛顿-ADI 方法更快。最后,我们给出了一些数值示例来说明我们算法的有效性和理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信