Spectral-Galerkin methods for the fully nonlinear Monge-Ampère equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lixiang Jin, Zhaoxiang Li, Peipei Wang, Lijun Yi
{"title":"Spectral-Galerkin methods for the fully nonlinear Monge-Ampère equation","authors":"Lixiang Jin,&nbsp;Zhaoxiang Li,&nbsp;Peipei Wang,&nbsp;Lijun Yi","doi":"10.1016/j.apnum.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop two numerical methods, the Legendre-Galerkin method and the generalized Log orthogonal functions Galerkin method for numerically solving the fully nonlinear Monge-Ampère equation. Both methods are constructed based on the vanishing moment approach. To address both solution stability and computational efficiency, we propose a multiple-level framework for resolving discretization schemes. The mathematical justifications of the new approaches and the error estimates for the Legendre-Galerkin method are established. Numerical experiments validate the accuracy of our methods, and a comparative experiment demonstrates the advantage of Log orthogonal functions for problems with corner singularities. The results highlight that our methods have high-order accuracy and small computational cost.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop two numerical methods, the Legendre-Galerkin method and the generalized Log orthogonal functions Galerkin method for numerically solving the fully nonlinear Monge-Ampère equation. Both methods are constructed based on the vanishing moment approach. To address both solution stability and computational efficiency, we propose a multiple-level framework for resolving discretization schemes. The mathematical justifications of the new approaches and the error estimates for the Legendre-Galerkin method are established. Numerical experiments validate the accuracy of our methods, and a comparative experiment demonstrates the advantage of Log orthogonal functions for problems with corner singularities. The results highlight that our methods have high-order accuracy and small computational cost.
全非线性蒙日-安培方程的谱-加勒金方法
本文开发了两种数值方法,即 Legendre-Galerkin 方法和广义对数正交函数 Galerkin 方法,用于数值求解全非线性 Monge-Ampère 方程。这两种方法都基于消失矩方法。为了同时解决求解稳定性和计算效率问题,我们提出了一个多层次的离散化方案框架。我们建立了新方法的数学理由和 Legendre-Galerkin 方法的误差估计。数值实验验证了我们方法的准确性,对比实验证明了 Log 正交函数在处理角奇点问题时的优势。结果表明,我们的方法具有高阶精度和较小的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信