{"title":"Mixed finite element analysis for a modified Poisson–Fermi interface problem accounting for electrostatic correlations","authors":"Mengjie Liu , Mingyan He , Pengtao Sun","doi":"10.1016/j.cnsns.2024.108385","DOIUrl":null,"url":null,"abstract":"<div><div>The Bazant–Storey–Kornyshev (BSK) theory <span><span>[1]</span></span>, <span><span>[2]</span></span>, <span><span>[3]</span></span> recently developed an important continuum framework to expound the nonlocal dielectric permittivity of ionic liquids due to electrostatic correlations, leading to a fourth-order modified Poisson–Fermi equation to model the electrostatic potential field in the solvent (e.g., the electrolyte), while the standard second-order Poisson–Fermi equation is still valid in modeling the electrostatic potential field in the solute. Thus an interface problem is formed between the fourth-order and second-order Poisson–Fermi equations through the interface of solvent and solute with jump coefficients, which has exerted tremendous impacts on applications of electrokinetics, electrochemistry, biophysics, and etc. In this paper, a type of mixed finite element method is developed to solve the proposed interface problem once for all variables: the electrostatic potential, electric field, electric displacement field, electrostatic stress as well as interactional force in the electrolyte in an accurate fashion, and its optimal convergence properties are analyzed for all variables in their respective norms. Numerical experiments are carried out through self-defined mathematical examples to validate all attained theoretical results. Furthermore, as a part of modeling verification for the presented interface problem that models the BSK theory, a practically physical example is investigated to validate the necessity of introducing the fourth-order modified Poisson–Fermi equation to describe the electrostatic correlation effects due to charge reversal phenomenon.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Bazant–Storey–Kornyshev (BSK) theory [1], [2], [3] recently developed an important continuum framework to expound the nonlocal dielectric permittivity of ionic liquids due to electrostatic correlations, leading to a fourth-order modified Poisson–Fermi equation to model the electrostatic potential field in the solvent (e.g., the electrolyte), while the standard second-order Poisson–Fermi equation is still valid in modeling the electrostatic potential field in the solute. Thus an interface problem is formed between the fourth-order and second-order Poisson–Fermi equations through the interface of solvent and solute with jump coefficients, which has exerted tremendous impacts on applications of electrokinetics, electrochemistry, biophysics, and etc. In this paper, a type of mixed finite element method is developed to solve the proposed interface problem once for all variables: the electrostatic potential, electric field, electric displacement field, electrostatic stress as well as interactional force in the electrolyte in an accurate fashion, and its optimal convergence properties are analyzed for all variables in their respective norms. Numerical experiments are carried out through self-defined mathematical examples to validate all attained theoretical results. Furthermore, as a part of modeling verification for the presented interface problem that models the BSK theory, a practically physical example is investigated to validate the necessity of introducing the fourth-order modified Poisson–Fermi equation to describe the electrostatic correlation effects due to charge reversal phenomenon.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.