Nonlinear mechanical behaviour and visco-hyperelastic constitutive description of isotropic-genesis, polydomain liquid crystal elastomers at high strain rates
IF 5 2区 工程技术Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin Wang , Jiatong Han , Hongtu Xu , Haibo Ji , Zengshen Yue , Rui Zhang , Bingyang Li , Yan Ji , Zhen Li , Pengfei Wang , Tian Jian Lu
{"title":"Nonlinear mechanical behaviour and visco-hyperelastic constitutive description of isotropic-genesis, polydomain liquid crystal elastomers at high strain rates","authors":"Xin Wang , Jiatong Han , Hongtu Xu , Haibo Ji , Zengshen Yue , Rui Zhang , Bingyang Li , Yan Ji , Zhen Li , Pengfei Wang , Tian Jian Lu","doi":"10.1016/j.jmps.2024.105882","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical behaviour of isotropic-genesis, polydomain liquid crystal elastomers (I-PLCEs) at various strain rates is systematically investigated via experiments, theoretical analysis, and numerical modelling. Experiments encompassing SEM (scanning electron microscope), DSC (differential scanning calorimetry), TGA (thermogravimetric analyser), quasi-static and dynamic (SHPB – split Hopkinson pressure bar) mechanical tests, as well as drop-weight impact tests, are undertaken to identify the nonlinear, large-strain, rate-dependent relationship between compressive stress and deformation of the I-PLCEs studied. Subsequently, a three-dimensional compressible visco-hyperelastic constitutive model for the material is established based on the summation of Cauchy stress components. The as-used model yields good agreement with experimental data, particularly an excellent description of the mechanical responses at high strain rates of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> s<sup>−1</sup>. The fully-calibrated constitutive model is implemented in the commercial finite element code ABAQUS via a virtual user-defined material (VUMAT) subroutine. The inhomogeneous deformation processes of the I-PLCEs, corresponding to impact by a hemispherically-tipped drop weight, which induces complex stress states, are also well described. Finally, when evaluated by two dimensionless physical parameters, the I-PLCEs demonstrate a more pronounced strain rate sensitivity in terms of dynamic strength and impact toughness compared to other commonly used materials, highlighting their superior performance in dynamic loading scenarios. The present study is helpful for the design and development of impact-resistant LCE-based materials and structures.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105882"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962400348X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behaviour of isotropic-genesis, polydomain liquid crystal elastomers (I-PLCEs) at various strain rates is systematically investigated via experiments, theoretical analysis, and numerical modelling. Experiments encompassing SEM (scanning electron microscope), DSC (differential scanning calorimetry), TGA (thermogravimetric analyser), quasi-static and dynamic (SHPB – split Hopkinson pressure bar) mechanical tests, as well as drop-weight impact tests, are undertaken to identify the nonlinear, large-strain, rate-dependent relationship between compressive stress and deformation of the I-PLCEs studied. Subsequently, a three-dimensional compressible visco-hyperelastic constitutive model for the material is established based on the summation of Cauchy stress components. The as-used model yields good agreement with experimental data, particularly an excellent description of the mechanical responses at high strain rates of s−1. The fully-calibrated constitutive model is implemented in the commercial finite element code ABAQUS via a virtual user-defined material (VUMAT) subroutine. The inhomogeneous deformation processes of the I-PLCEs, corresponding to impact by a hemispherically-tipped drop weight, which induces complex stress states, are also well described. Finally, when evaluated by two dimensionless physical parameters, the I-PLCEs demonstrate a more pronounced strain rate sensitivity in terms of dynamic strength and impact toughness compared to other commonly used materials, highlighting their superior performance in dynamic loading scenarios. The present study is helpful for the design and development of impact-resistant LCE-based materials and structures.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.