Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Saloni Gupta, Arnab Kayal, Moumita Mandal
{"title":"Superconvergence results for hypersingular integral equation of first kind by Chebyshev spectral projection methods","authors":"Saloni Gupta,&nbsp;Arnab Kayal,&nbsp;Moumita Mandal","doi":"10.1016/j.amc.2024.129093","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>N</mi></math></span> is the highest degree of Chebyshev polynomials employed in the approximation space and <em>r</em> is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>3</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>4</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span>, by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400554X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose Chebyshev spectral projection methods to solve the hypersingular integral equation of first kind. The presence of strong singularity in Hadamard sense in the first part of the integral equation makes it challenging to get superconvergence results. To overcome this, we transform the first kind hypersingular integral equation into a second kind integral equation. This is achieved by defining a bounded inverse of the hypersingular integral operator in some suitable Hilbert space. Using iterated Chebyshev spectral Galerkin method on the equivalent second kind integral equation, we obtain improved convergence of O(N2r), where N is the highest degree of Chebyshev polynomials employed in the approximation space and r is the smoothness of the solution. Further, using commutativity of projection operator and inverse of the hypersingular integral operator, we are able to obtain superconvergence of O(N3r) and O(N4r), by Chebyshev spectral multi-Galerkin method (CSMGM) and iterated CSMGM, respectively. Finally, numerical examples are presented to verify our theoretical results.
用切比雪夫谱投影法求得超积分第一类积分方程的超收敛结果
在本文中,我们提出了切比雪夫谱投影法来求解第一类超正交积分方程。由于积分方程的第一部分存在哈达玛意义上的强奇异性,因此获得超收敛结果具有挑战性。为了克服这一问题,我们将第一类超奇异积分方程转化为第二类积分方程。这是通过在某个合适的希尔伯特空间定义超积分算子的有界逆来实现的。在等效的第二类积分方程上使用迭代切比雪夫谱 Galerkin 方法,我们获得了 O(N-2r)的改进收敛性,其中 N 是近似空间中使用的切比雪夫多项式的最高度数,r 是解的平滑度。此外,利用投影算子的交换性和超积分算子的逆,我们可以通过切比雪夫谱多伽勒金方法(CSMGM)和迭代 CSMGM 分别获得 O(N-3r) 和 O(N-4r) 的超收敛性。最后,我们给出了数值实例来验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信