A global approximation method for second-kind nonlinear integral equations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Luisa Fermo , Anna Lucia Laguardia , Concetta Laurita , Maria Grazia Russo
{"title":"A global approximation method for second-kind nonlinear integral equations","authors":"Luisa Fermo ,&nbsp;Anna Lucia Laguardia ,&nbsp;Concetta Laurita ,&nbsp;Maria Grazia Russo","doi":"10.1016/j.amc.2024.129094","DOIUrl":null,"url":null,"abstract":"<div><div>A global approximation method of Nyström type is explored for the numerical solution of a class of nonlinear integral equations of the second kind. The cases of smooth and weakly singular kernels are both considered. In the first occurrence, the method uses a Gauss-Legendre rule whereas in the second one resorts to a product rule based on Legendre nodes. Stability and convergence are proved in functional spaces equipped with the uniform norm and several numerical tests are given to show the good performance of the proposed method. An application to the interior Neumann problem for the Laplace equation with nonlinear boundary conditions is also considered.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005551","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A global approximation method of Nyström type is explored for the numerical solution of a class of nonlinear integral equations of the second kind. The cases of smooth and weakly singular kernels are both considered. In the first occurrence, the method uses a Gauss-Legendre rule whereas in the second one resorts to a product rule based on Legendre nodes. Stability and convergence are proved in functional spaces equipped with the uniform norm and several numerical tests are given to show the good performance of the proposed method. An application to the interior Neumann problem for the Laplace equation with nonlinear boundary conditions is also considered.
第二类非线性积分方程的全局近似法
本论文探讨了一种 Nyström 类型的全局近似方法,用于数值求解一类第二类非线性积分方程。该方法同时考虑了光滑核和弱奇异核的情况。在第一种情况下,该方法使用高斯-勒让德规则,而在第二种情况下,则使用基于勒让德节点的乘积规则。在配有统一规范的函数空间中,证明了稳定性和收敛性,并给出了几个数值测试,以显示所提方法的良好性能。此外,还考虑了对具有非线性边界条件的拉普拉斯方程的内部诺依曼问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信