Relaxed conditions for parameterized linear matrix inequality in the form of nested fuzzy summations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Do Wan Kim , Donghwan Lee
{"title":"Relaxed conditions for parameterized linear matrix inequality in the form of nested fuzzy summations","authors":"Do Wan Kim ,&nbsp;Donghwan Lee","doi":"10.1016/j.amc.2024.129079","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to investigate less conservative conditions for parameterized linear matrix inequalities (PLMIs) that are formulated as nested fuzzy summations. Such PLMIs are commonly encountered in stability analysis and control design problems for Takagi-Sugeno (T-S) fuzzy systems. Utilizing the weighted inequality of arithmetic and geometric means (AM-GM inequality), we develop new, less conservative linear matrix inequalities for the PLMIs. This methodology enables us to efficiently handle the product of membership functions that have intersecting indices. Through empirical case studies, we demonstrate that our proposed conditions produce less conservative results compared to existing approaches in the literature.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400540X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to investigate less conservative conditions for parameterized linear matrix inequalities (PLMIs) that are formulated as nested fuzzy summations. Such PLMIs are commonly encountered in stability analysis and control design problems for Takagi-Sugeno (T-S) fuzzy systems. Utilizing the weighted inequality of arithmetic and geometric means (AM-GM inequality), we develop new, less conservative linear matrix inequalities for the PLMIs. This methodology enables us to efficiently handle the product of membership functions that have intersecting indices. Through empirical case studies, we demonstrate that our proposed conditions produce less conservative results compared to existing approaches in the literature.
嵌套模糊求和形式的参数化线性矩阵不等式的宽松条件
本研究旨在探讨参数化线性矩阵不等式(PLMI)的较低保守条件,这些不等式被表述为嵌套模糊求和。此类 PLMI 通常出现在高木-菅野(T-S)模糊系统的稳定性分析和控制设计问题中。利用算术和几何均值加权不等式(AM-GM 不等式),我们为 PLMIs 开发了新的、不太保守的线性矩阵不等式。这种方法使我们能够有效地处理具有相交指数的成员函数乘积。通过实证案例研究,我们证明了与文献中的现有方法相比,我们提出的条件产生的结果不那么保守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信