Wenbao Liu , Tao Zheng , Yonglun Wang , Wengang Liu , Yanbai Shen , Shuling Gao , Qiang Zhao
{"title":"Enhancement mechanism of metal ions on the flotation behavior of muscovite in sodium oleate system","authors":"Wenbao Liu , Tao Zheng , Yonglun Wang , Wengang Liu , Yanbai Shen , Shuling Gao , Qiang Zhao","doi":"10.1016/j.mineng.2024.109035","DOIUrl":null,"url":null,"abstract":"<div><div>Metal ions have been employed to improve the flotation efficiency of muscovite, yet the underlying enhancing mechanisms remain unclear. In this study, we systematically investigated the improvement in muscovite flotation by adding metal ions with different valence states (K<sup>+</sup>, Ca<sup>2+</sup>, and Al<sup>3+</sup>). Flotation experiments revealed that the muscovite recovery rate increased from approximately 10 % to over 70 % with the addition of Ca<sup>2+</sup> and Al<sup>3+</sup>, while it decreased to less than 1 % with the introduction of K<sup>+</sup>. Fourier Transform Infrared spectrophotometer (FT-IR), contact angle tests, and zeta potential analysis confirmed the significant changes in the surface properties of muscovite after binding with K<sup>+</sup>, Ca<sup>2+</sup>, and Al<sup>3+</sup>. Surface electrostatic potential (ESP) results indicated that the muscovite surface exhibited positive electrostatic potential in the presence of these metal ions, facilitating the adsorption of collectors (NaOL) and enhancing the flotation recovery of muscovite. Furthermore, molecular dynamics (MD) simulations demonstrated that the enhancing effect of Al(OH)<sub>2</sub><sup>+</sup> on collector adsorption was more pronounced than that of AlOH<sup>2+</sup>, attributed to the better dispersion of the OL-Al(OH)<sub>2</sub> complex compared to the 2OL-AlOH complex. These findings provide new insights into the complexation between metals and anionic collectors, and improving the flotation effect of minerals through metal ions has significant potential for industrial applications.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"218 ","pages":"Article 109035"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004643","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal ions have been employed to improve the flotation efficiency of muscovite, yet the underlying enhancing mechanisms remain unclear. In this study, we systematically investigated the improvement in muscovite flotation by adding metal ions with different valence states (K+, Ca2+, and Al3+). Flotation experiments revealed that the muscovite recovery rate increased from approximately 10 % to over 70 % with the addition of Ca2+ and Al3+, while it decreased to less than 1 % with the introduction of K+. Fourier Transform Infrared spectrophotometer (FT-IR), contact angle tests, and zeta potential analysis confirmed the significant changes in the surface properties of muscovite after binding with K+, Ca2+, and Al3+. Surface electrostatic potential (ESP) results indicated that the muscovite surface exhibited positive electrostatic potential in the presence of these metal ions, facilitating the adsorption of collectors (NaOL) and enhancing the flotation recovery of muscovite. Furthermore, molecular dynamics (MD) simulations demonstrated that the enhancing effect of Al(OH)2+ on collector adsorption was more pronounced than that of AlOH2+, attributed to the better dispersion of the OL-Al(OH)2 complex compared to the 2OL-AlOH complex. These findings provide new insights into the complexation between metals and anionic collectors, and improving the flotation effect of minerals through metal ions has significant potential for industrial applications.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.