Vladimir Zholobenko , Martin Hollamby , Aqeel Al-Ani , Oleg I. Lebedev , Andrew J. Smith , Tim Snow
{"title":"A nanoscale investigation of the formation of mesostructured zeolites FAU and LTL","authors":"Vladimir Zholobenko , Martin Hollamby , Aqeel Al-Ani , Oleg I. Lebedev , Andrew J. Smith , Tim Snow","doi":"10.1016/j.micromeso.2024.113363","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructured materials can be utilised as potential catalysts for the production of platform chemicals and renewable biofuels from biomass derived molecules. The formation of hierarchical meso-microporous zeolites LTL and FAU via the surfactant assisted tandem acid-base post-synthesis treatment has been investigated by time-resolved in situ synchrotron SAXS and WAXS, providing a new insight into the mechanism of the mesostructuring treatment. Based on the results of TEM and in situ synchrotron measurements, a model for the formation of the core-shell structure of LTL zeolite crystals is proposed. Complementary evaluation using FTIR, NMR and nitrogen adsorption, in conjunction with reaction studies on mesostructured zeolites, demonstrated a potential for enhanced catalytic performance of these materials owing to the increased accessibility of the active sites and reduced transport limitations.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113363"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003858","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructured materials can be utilised as potential catalysts for the production of platform chemicals and renewable biofuels from biomass derived molecules. The formation of hierarchical meso-microporous zeolites LTL and FAU via the surfactant assisted tandem acid-base post-synthesis treatment has been investigated by time-resolved in situ synchrotron SAXS and WAXS, providing a new insight into the mechanism of the mesostructuring treatment. Based on the results of TEM and in situ synchrotron measurements, a model for the formation of the core-shell structure of LTL zeolite crystals is proposed. Complementary evaluation using FTIR, NMR and nitrogen adsorption, in conjunction with reaction studies on mesostructured zeolites, demonstrated a potential for enhanced catalytic performance of these materials owing to the increased accessibility of the active sites and reduced transport limitations.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.