{"title":"Stability and dissolution of single-crystalline iron oxide thin films in electrochemical environments","authors":"","doi":"10.1016/j.susc.2024.122621","DOIUrl":null,"url":null,"abstract":"<div><div>The stability of single-crystalline monolayer FeO(111) and 10 nm thin Fe<sub>3</sub>O<sub>4</sub>(111) films on Pt(111) upon exposure to environments of increasing chemical complexity has been studied with X-ray photoelectron spectroscopy, temperature-programmed desorption, in-situ scanning tunneling microscopy, and cyclic voltammetry. The well-defined oxide films, which were prepared under ultrahigh-vacuum conditions, were exposed to aqueous solutions of different pH and electrochemical cycling in pure and catechol-containing electrolyte. The films are stable in neutral (pH 7) and alkaline (pH 13) solutions both at open circuit conditions and during electrochemical cycling within the limits of hydrogen and oxygen evolution potentials. Also in strongly acidic (pH 1) perchlorate solution the films remain intact under open circuit conditions, but they quickly dissolve on application of electrochemical potential. Especially for the ultrathin FeO(111) films, catechol enhances the dissolution at neutral pH during electrochemical cycling. A comparison of Pt(111), FeO(111) and Fe<sub>3</sub>O<sub>4</sub>(111) substrates in the electrochemical catechol oxidation reaction reveals enhanced and sustained activity of FeO in alkaline environment, while strong deactivation occurs on Pt(111) and Fe<sub>3</sub>O<sub>4</sub>(111). This is explained by the weaker interaction between catechol and FeO(111) compared to the other substrates, which hampers the formation of a barrier layer on the electrode surface.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001729","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of single-crystalline monolayer FeO(111) and 10 nm thin Fe3O4(111) films on Pt(111) upon exposure to environments of increasing chemical complexity has been studied with X-ray photoelectron spectroscopy, temperature-programmed desorption, in-situ scanning tunneling microscopy, and cyclic voltammetry. The well-defined oxide films, which were prepared under ultrahigh-vacuum conditions, were exposed to aqueous solutions of different pH and electrochemical cycling in pure and catechol-containing electrolyte. The films are stable in neutral (pH 7) and alkaline (pH 13) solutions both at open circuit conditions and during electrochemical cycling within the limits of hydrogen and oxygen evolution potentials. Also in strongly acidic (pH 1) perchlorate solution the films remain intact under open circuit conditions, but they quickly dissolve on application of electrochemical potential. Especially for the ultrathin FeO(111) films, catechol enhances the dissolution at neutral pH during electrochemical cycling. A comparison of Pt(111), FeO(111) and Fe3O4(111) substrates in the electrochemical catechol oxidation reaction reveals enhanced and sustained activity of FeO in alkaline environment, while strong deactivation occurs on Pt(111) and Fe3O4(111). This is explained by the weaker interaction between catechol and FeO(111) compared to the other substrates, which hampers the formation of a barrier layer on the electrode surface.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.