Spatial LiDAR odometry and mapping for complex agricultural environments - Spatial FieldLOAM

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING
Jurij Rakun , František Duchoň , Peter Lepej
{"title":"Spatial LiDAR odometry and mapping for complex agricultural environments - Spatial FieldLOAM","authors":"Jurij Rakun ,&nbsp;František Duchoň ,&nbsp;Peter Lepej","doi":"10.1016/j.biosystemseng.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>The challenge of autonomous driving in natural environments, without the use of GNSS devices is addressed. It utilises the readings from a multichannel LiDAR, supported by IMU, and enhances the capabilities of the FieldSLAM algorithm to establish an independent localisation and mapping system. This system is designed for performing specific tasks in predefined agricultural areas, employing incremental LOAM techniques. By comparing the outcomes of the novel Spatial FieldLOAM algorithm with the assistance of a precise Inertial Measurement Unit (IMU) and using the state-of-the-art RTK-GPS system as the ground truth, it is concluded that the Spatial FieldLOAM achieves an error rate of 5.5%, whereas the Xsens IMU yields an error rate of 5.7%. In terms of Euclidean distances to the final RTK GPS supported localisation on a 68.7 m test run, the error rates are 3.78 m and 3.92 m, respectively, or 0.0038 m per epoch for the Spatial FieldLOAM algorithm during non-vegetation season. The tests were also conducted during the vegetation season in a total length of 210 m, revealing a difference of 3.07 m distance between the final position calculated by the Spatial FieldLOAM and Xsens IMU.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"248 ","pages":"Pages 58-72"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002228","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of autonomous driving in natural environments, without the use of GNSS devices is addressed. It utilises the readings from a multichannel LiDAR, supported by IMU, and enhances the capabilities of the FieldSLAM algorithm to establish an independent localisation and mapping system. This system is designed for performing specific tasks in predefined agricultural areas, employing incremental LOAM techniques. By comparing the outcomes of the novel Spatial FieldLOAM algorithm with the assistance of a precise Inertial Measurement Unit (IMU) and using the state-of-the-art RTK-GPS system as the ground truth, it is concluded that the Spatial FieldLOAM achieves an error rate of 5.5%, whereas the Xsens IMU yields an error rate of 5.7%. In terms of Euclidean distances to the final RTK GPS supported localisation on a 68.7 m test run, the error rates are 3.78 m and 3.92 m, respectively, or 0.0038 m per epoch for the Spatial FieldLOAM algorithm during non-vegetation season. The tests were also conducted during the vegetation season in a total length of 210 m, revealing a difference of 3.07 m distance between the final position calculated by the Spatial FieldLOAM and Xsens IMU.
用于复杂农业环境的空间激光雷达里程测量和制图 - Spatial FieldLOAM
在不使用全球导航卫星系统(GNSS)设备的情况下,解决了在自然环境中自动驾驶的难题。它利用多通道激光雷达的读数,在 IMU 的支持下,增强了 FieldSLAM 算法的功能,从而建立了一个独立的定位和绘图系统。该系统设计用于在预定义的农业区域执行特定任务,并采用增量 LOAM 技术。在精确惯性测量单元(IMU)的协助下,使用最先进的 RTK-GPS 系统作为地面实况,通过比较新型空间现场 LOAM 算法的结果,得出的结论是空间现场 LOAM 的误差率为 5.5%,而 Xsens IMU 的误差率为 5.7%。在 68.7 米的测试运行中,就与最终 RTK GPS 支持的定位之间的欧氏距离而言,在非植被覆盖季节,Spatial FieldLOAM 算法的误差率分别为 3.78 米和 3.92 米,或每历元 0.0038 米。在植被覆盖季节还进行了总长度为 210 米的测试,结果显示 Spatial FieldLOAM 和 Xsens IMU 计算的最终位置距离相差 3.07 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信