Minming Jiang , Jiang Xu , Chaowei Liu , Zong-Han Xie , Paul R. Munroe
{"title":"Enhanced corrosion resistance of NbTaMoW medium entropy alloy coatings in simulated PEMFC environments: Experimental and computational insights","authors":"Minming Jiang , Jiang Xu , Chaowei Liu , Zong-Han Xie , Paul R. Munroe","doi":"10.1016/j.corsci.2024.112499","DOIUrl":null,"url":null,"abstract":"<div><div>An anti-corrosive and conductive NbTaMoW medium entropy alloy (MEA) coating was deposited on 304 stainless steel using a dual-cathode glow discharge technology. This MEA coating exhibits a single body-centered cubic phase with about 10 nm grains, and forms a passivation film with significantly enhanced corrosion resistance at any given HF concentration. The lower adsorption energy of Nb atoms for oxygen atoms leads to the enrichment of Nb oxides in the passivation film, which is beneficial for hindering the rapid diffusion of F<sup>−</sup> ions. These findings underscore the potential of NbTaMoW MEA coatings to improve the durability and efficiency of PEMFCs.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112499"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24006942","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An anti-corrosive and conductive NbTaMoW medium entropy alloy (MEA) coating was deposited on 304 stainless steel using a dual-cathode glow discharge technology. This MEA coating exhibits a single body-centered cubic phase with about 10 nm grains, and forms a passivation film with significantly enhanced corrosion resistance at any given HF concentration. The lower adsorption energy of Nb atoms for oxygen atoms leads to the enrichment of Nb oxides in the passivation film, which is beneficial for hindering the rapid diffusion of F− ions. These findings underscore the potential of NbTaMoW MEA coatings to improve the durability and efficiency of PEMFCs.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.