{"title":"Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm","authors":"","doi":"10.1016/j.probengmech.2024.103690","DOIUrl":null,"url":null,"abstract":"<div><div>Reliability analysis of structures under earthquake loading represents a significant engineering challenge. This is due to the required and rather numerically involving non-linear dynamic analysis, the large computational burden when targeting small failure probabilities, and the synthetic earthquake model representation that may contain thousands of random variables. Subset Simulation is an efficient reliability analysis technique that can handle the challenge of a high-dimensional space with a reduced number of structural analysis calls compared to crude Monte Carlo Simulation. In this contribution, firstly, we investigate the conditions for which Subset Simulation performs efficiently. Thereafter we propose an enhancement to the existing Subset Simulation schemes that shows significant potentials for enhancing the strategy for the starting of the Markov Chain Monte Carlo simulations whenever a new level is reached in the Subset Simulation. Finally, the information gathered from the simulations is investigated to verify that Subset Simulation provides meaningful results from a physical point of view.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliability analysis of structures under earthquake loading represents a significant engineering challenge. This is due to the required and rather numerically involving non-linear dynamic analysis, the large computational burden when targeting small failure probabilities, and the synthetic earthquake model representation that may contain thousands of random variables. Subset Simulation is an efficient reliability analysis technique that can handle the challenge of a high-dimensional space with a reduced number of structural analysis calls compared to crude Monte Carlo Simulation. In this contribution, firstly, we investigate the conditions for which Subset Simulation performs efficiently. Thereafter we propose an enhancement to the existing Subset Simulation schemes that shows significant potentials for enhancing the strategy for the starting of the Markov Chain Monte Carlo simulations whenever a new level is reached in the Subset Simulation. Finally, the information gathered from the simulations is investigated to verify that Subset Simulation provides meaningful results from a physical point of view.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.