On a new class of non-dynamical ABCD algebras for classical and quantum integrable systems

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
T. Skrypnyk
{"title":"On a new class of non-dynamical ABCD algebras for classical and quantum integrable systems","authors":"T. Skrypnyk","doi":"10.1016/j.nuclphysb.2024.116685","DOIUrl":null,"url":null,"abstract":"<div><div>We consider classical and quantum non-dynamical quadratic <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span> Lax algebras with classical and quantum <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors satisfying a set of quadratic non-dynamical Yang-Baxter-type equations generalizing those of Fredel and Maillet <span><span>[1]</span></span>. We establish a relation of some of these equations with the so-called “semi-dynamical” Yang-Baxter equations of <span><span>[2]</span></span>. We show that the linearization of the corresponding quadratic structures lead to linear tensor structures with the classical <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <em>r</em>-matrices satisfying usual “permuted” classical Yang-Baxter equations <span><span>[1]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span>. We consider example of our construction associated with the deformed <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-graded <em>r</em>-matrix of <span><span>[9]</span></span>, <span><span>[10]</span></span>, <span><span>[11]</span></span> and explicitly construct the corresponding <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors — both classical and quantum. Small <em>n</em> examples are also considered in some details.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116685"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002517","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider classical and quantum non-dynamical quadratic abcd Lax algebras with classical and quantum gl(n)gl(n)-valued abcd-tensors satisfying a set of quadratic non-dynamical Yang-Baxter-type equations generalizing those of Fredel and Maillet [1]. We establish a relation of some of these equations with the so-called “semi-dynamical” Yang-Baxter equations of [2]. We show that the linearization of the corresponding quadratic structures lead to linear tensor structures with the classical gl(n)gl(n)-valued r-matrices satisfying usual “permuted” classical Yang-Baxter equations [1], [3], [4], [5]. We consider example of our construction associated with the deformed Zn-graded r-matrix of [9], [10], [11] and explicitly construct the corresponding abcd-tensors — both classical and quantum. Small n examples are also considered in some details.
论经典和量子可积分系统的一类新的非动力学 ABCD 矩阵
我们考虑了具有经典和量子 gl(n)⊗gl(n)值的 abcd 张量的经典和量子非动力二次 abcd 拉克斯布拉,它满足一组二次非动力杨-巴克斯特方程,概括了 Fredel 和 Maillet [1] 的方程。我们建立了其中一些方程与 [2] 中所谓 "半动态 "杨-巴克斯特方程的关系。我们证明,相应二次结构的线性化会导致线性张量结构与经典的 gl(n)⊗gl(n)-valued r 矩满足通常的 "置换 "经典杨-巴克斯特方程 [1]、[3]、[4]、[5]。我们考虑了与 [9]、[10]、[11] 的变形 Zn 级 r 矩阵相关的构造实例,并明确构造了相应的 abcd 张量--包括经典张量和量子张量。我们还详细考虑了小 n 例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信