Rogue waves on the periodic background for a higher-order nonlinear Schrödinger–Maxwell–Bloch system

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"Rogue waves on the periodic background for a higher-order nonlinear Schrödinger–Maxwell–Bloch system","authors":"","doi":"10.1016/j.wavemoti.2024.103417","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct the rogue wave solutions on the background of the Jacobian elliptic functions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system. The Jacobian elliptic function traveling wave solutions as the seed solutions are considered. Through the approach of the nonlinearization of the Lax pair and Darboux transformation method, the rogue waves and the line rogue waves on the Jacobian elliptic functions dn and cn background are obtained, respectively.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001471","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct the rogue wave solutions on the background of the Jacobian elliptic functions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system. The Jacobian elliptic function traveling wave solutions as the seed solutions are considered. Through the approach of the nonlinearization of the Lax pair and Darboux transformation method, the rogue waves and the line rogue waves on the Jacobian elliptic functions dn and cn background are obtained, respectively.
高阶非线性薛定谔-麦克斯韦-布洛赫系统的周期性背景上的游荡波
本文以高阶非线性薛定谔-麦克斯韦-布洛赫(Schrödinger-Maxwell-Bloch)系统的雅各布椭圆函数为背景,构建了流波解。雅各布椭圆函数行波解被视为种子解。通过拉克斯对的非线性化和达尔布克斯变换方法,分别得到了雅各布椭圆函数 dn 和 cn 背景上的流氓波和线流氓波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信