{"title":"Rogue waves on the periodic background for a higher-order nonlinear Schrödinger–Maxwell–Bloch system","authors":"","doi":"10.1016/j.wavemoti.2024.103417","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct the rogue wave solutions on the background of the Jacobian elliptic functions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system. The Jacobian elliptic function traveling wave solutions as the seed solutions are considered. Through the approach of the nonlinearization of the Lax pair and Darboux transformation method, the rogue waves and the line rogue waves on the Jacobian elliptic functions dn and cn background are obtained, respectively.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001471","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we construct the rogue wave solutions on the background of the Jacobian elliptic functions for a higher-order nonlinear Schrödinger–Maxwell–Bloch system. The Jacobian elliptic function traveling wave solutions as the seed solutions are considered. Through the approach of the nonlinearization of the Lax pair and Darboux transformation method, the rogue waves and the line rogue waves on the Jacobian elliptic functions dn and cn background are obtained, respectively.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.