Failure analysis of unidirectional fiber reinforced plastics based on computational micromechanics and PUCK failure theory

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Failure analysis of unidirectional fiber reinforced plastics based on computational micromechanics and PUCK failure theory","authors":"","doi":"10.1016/j.mechmat.2024.105169","DOIUrl":null,"url":null,"abstract":"<div><div>Achievement of accurate and reliable failure criterion is fundamentally important for designing composite structures. This study comprehensively evaluated the failure of unidirectional fiber-reinforced plastics (FRP) from the perspectives of failure theory and computational micromechanics. Further, PUCK failure criterion was analyzed in detail to identify the specific effects of the interfacial reinforcement coefficient on the failure mechanism. The representative volume element model of FRP with randomly distributed fibers was established. The comparative analysis of the results between current failure theory and experiment, indicates that the load bearing capacity of FRP under bi-axial compressive stress and shear stress is understated by the PUCK failure criterion. Microscopic finite element analysis was adopted to investigate the failure envelope of FRP, considering interface reinforcement coefficient. The results reveal that the strength of FRP under the combination of moderate transverse compressive stress and in-plane shear stress is significantly affected by the interface reinforcement coefficient. The accuracy of PUCK failure criterion heavily depends on the value of the interface reinforcement coefficient and if the criterion does not consider the coefficient, it can cause notable error on strength prediction. Consequently, determination of interface reinforcement coefficient would be helpful to achieve more accurate failure criterion for FRP.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002618","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achievement of accurate and reliable failure criterion is fundamentally important for designing composite structures. This study comprehensively evaluated the failure of unidirectional fiber-reinforced plastics (FRP) from the perspectives of failure theory and computational micromechanics. Further, PUCK failure criterion was analyzed in detail to identify the specific effects of the interfacial reinforcement coefficient on the failure mechanism. The representative volume element model of FRP with randomly distributed fibers was established. The comparative analysis of the results between current failure theory and experiment, indicates that the load bearing capacity of FRP under bi-axial compressive stress and shear stress is understated by the PUCK failure criterion. Microscopic finite element analysis was adopted to investigate the failure envelope of FRP, considering interface reinforcement coefficient. The results reveal that the strength of FRP under the combination of moderate transverse compressive stress and in-plane shear stress is significantly affected by the interface reinforcement coefficient. The accuracy of PUCK failure criterion heavily depends on the value of the interface reinforcement coefficient and if the criterion does not consider the coefficient, it can cause notable error on strength prediction. Consequently, determination of interface reinforcement coefficient would be helpful to achieve more accurate failure criterion for FRP.
基于计算微机械学和 PUCK 失效理论的单向纤维增强塑料失效分析
准确可靠的失效准则对于设计复合材料结构至关重要。本研究从失效理论和计算微观力学的角度全面评估了单向纤维增强塑料(FRP)的失效。此外,还详细分析了 PUCK 失效准则,以确定界面增强系数对失效机理的具体影响。建立了具有代表性的随机分布纤维 FRP 体积元素模型。对现有破坏理论和实验结果的对比分析表明,PUCK 破坏准则低估了玻璃钢在双轴压应力和剪应力下的承载能力。考虑到界面加固系数,采用微观有限元分析来研究玻璃钢的破坏包络。结果表明,在中等横向压应力和平面剪应力组合下,玻璃钢的强度受界面加固系数的影响很大。PUCK 失效判据的准确性在很大程度上取决于界面加固系数的值,如果判据不考虑该系数,则会对强度预测造成明显误差。因此,确定界面加固系数将有助于获得更准确的玻璃钢破坏准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信