{"title":"Ray tracing design-optimization & experimental validation of water based optical filter to reduce solar PV module heating","authors":"","doi":"10.1016/j.csite.2024.105271","DOIUrl":null,"url":null,"abstract":"<div><div>The operating temperature of a photovoltaic (PV) module significantly impacts its efficiency. Increased temperatures reduce the efficiency due to a negative thermal coefficient, which decreases its power above standard test conditions (25 °C, 1000 W/m<sup>2</sup>). This research targets the reduction of thermal load on PV modules through the incorporation of a water-based optical filter, designed and optimized using ray tracing techniques. The optimal thickness for the glass was determined as 3 mm and 5 mm for the water layers of the filter, providing the best yield. The filter effectively absorbs 92 % of the infrared radiation and 47 % of the ultraviolet spectral flux, significantly reducing heat-induced efficiency losses in the PV module. Water-based optical filter system reduces the module temperature up to 9.80 °C. The optical filter-based PV system achieved a 4.56 % increase in electrical efficiency compared to the reference module, with an average efficiency of 12.19 %. The heated water, reaching up to 48.25 °C, can be reused for various industrial processes, providing both cooling for PV modules and a hot water source, making it versatile and efficient for regions needing both electricity and hot water.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The operating temperature of a photovoltaic (PV) module significantly impacts its efficiency. Increased temperatures reduce the efficiency due to a negative thermal coefficient, which decreases its power above standard test conditions (25 °C, 1000 W/m2). This research targets the reduction of thermal load on PV modules through the incorporation of a water-based optical filter, designed and optimized using ray tracing techniques. The optimal thickness for the glass was determined as 3 mm and 5 mm for the water layers of the filter, providing the best yield. The filter effectively absorbs 92 % of the infrared radiation and 47 % of the ultraviolet spectral flux, significantly reducing heat-induced efficiency losses in the PV module. Water-based optical filter system reduces the module temperature up to 9.80 °C. The optical filter-based PV system achieved a 4.56 % increase in electrical efficiency compared to the reference module, with an average efficiency of 12.19 %. The heated water, reaching up to 48.25 °C, can be reused for various industrial processes, providing both cooling for PV modules and a hot water source, making it versatile and efficient for regions needing both electricity and hot water.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.