Odi Fawwaz Alrebei , Mohammad Alherbawi , Zeineb Thiehmed , Rim Ismail , Mohamed Nasery , Abdulkarem I. Amhamed , Tareq Al-Ansari
{"title":"Aircraft performance of a novel SAF: Lower costs, lower environmental impact, and higher aircraft performance","authors":"Odi Fawwaz Alrebei , Mohammad Alherbawi , Zeineb Thiehmed , Rim Ismail , Mohamed Nasery , Abdulkarem I. Amhamed , Tareq Al-Ansari","doi":"10.1016/j.ecmx.2024.100739","DOIUrl":null,"url":null,"abstract":"<div><div>Investing in Sustainable Aviation Fuel (SAF) is crucial for reducing the aviation industry’s carbon footprint and mitigating climate change. As global air travel demand increases, SAF offers a viable solution to significantly lower greenhouse gas emissions and enhance energy security, ensuring a more sustainable future for aviation. Additionally, converting biomass, particularly waste materials, into SAF adds value by turning potential environmental liabilities into valuable energy resources, promoting a circular economy and reducing overall waste. This study evaluates the aircraft performance of a novel sustainable aviation fuel (SAF) derived from multiple feedstocks in a hybrid biorefinery. SAF performance is compared to two conventional jet fuels, specifically a blend of 30% kerosene and 70% gasoline and JET-A1. The results demonstrated that the optimal SAF outperformed conventional fuels in terms of both thrust and range. Specifically, SAF exhibited a 17% increase in thrust and a 10% increase in range compared to conventional Jet A1 fuel. This novel fuel did not only mitigate CO<sub>2</sub> emissions and achieve a cost reduction of 0.13 to 8.08%, but also exhibited superior aircraft performance. In addition, this fuel also meets the criteria of a “drop-in fuel” as it does not necessitate significant alterations to the currently existing CFM56-7B turbofan engine. This is due to its similar key thermodynamic indicators, such as heat capacities and combustion temperature, which are comparable to those of conventional jet fuels. In addition, this paper identifies the sensitivity of the CFM56–7B turbofan engine fuelled by the novel fuel.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100739"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Investing in Sustainable Aviation Fuel (SAF) is crucial for reducing the aviation industry’s carbon footprint and mitigating climate change. As global air travel demand increases, SAF offers a viable solution to significantly lower greenhouse gas emissions and enhance energy security, ensuring a more sustainable future for aviation. Additionally, converting biomass, particularly waste materials, into SAF adds value by turning potential environmental liabilities into valuable energy resources, promoting a circular economy and reducing overall waste. This study evaluates the aircraft performance of a novel sustainable aviation fuel (SAF) derived from multiple feedstocks in a hybrid biorefinery. SAF performance is compared to two conventional jet fuels, specifically a blend of 30% kerosene and 70% gasoline and JET-A1. The results demonstrated that the optimal SAF outperformed conventional fuels in terms of both thrust and range. Specifically, SAF exhibited a 17% increase in thrust and a 10% increase in range compared to conventional Jet A1 fuel. This novel fuel did not only mitigate CO2 emissions and achieve a cost reduction of 0.13 to 8.08%, but also exhibited superior aircraft performance. In addition, this fuel also meets the criteria of a “drop-in fuel” as it does not necessitate significant alterations to the currently existing CFM56-7B turbofan engine. This is due to its similar key thermodynamic indicators, such as heat capacities and combustion temperature, which are comparable to those of conventional jet fuels. In addition, this paper identifies the sensitivity of the CFM56–7B turbofan engine fuelled by the novel fuel.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.