{"title":"Monitoring evolutionary damage of bended concrete beams subjected to freeze-thaw cycling through piezoelectric-enabled wave propagation method","authors":"Qixiang Yan , Yunhui Qiu , Chuan Zhang , Zhengyu Xiong , Xiaolong Liao , Caihou Xu","doi":"10.1016/j.coldregions.2024.104337","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnels in cold regions are often subjected to freeze-thaw cycling, which poses a great challenge to a large number of tunnels in operation or to be built in these regions. Therefore, structural health monitoring (SHM) for lining concrete in cold regions is essential to ensure the safety and long-term operation of tunnels. In this study, the wave propagation method (WPM) is applied for the first time to monitor the cyclic freeze-thaw damage of lining concrete. First of all, the failure behaviors of concrete beams subjected to the coupling effect of flexural loading and freeze-thaw cycling are investigated. Particularly, the authors propose a refined numerical model to simulate the freeze-thaw cycling damage process of concrete beams considering the ice-water phase transition and concrete elastoplastic damage. Based on the numerical results, the internal damage expansion and flexural strength attenuation of concrete beams are revealed. Furthermore, the dynamic attenuation characteristics of stress waves are analyzed by using the wavelet packet decomposition and continuous wavelet transform to reveal. In addition, the WPM-based energy index is proposed to characterize the freeze-thaw damage degree of the lining concrete. A strong correlation is found between the stress wave signal and freeze-thaw damage, with a favorable correlation coefficient of 0.932, suggesting the excellent performance of the WPM in assessing the freeze-thaw damage of lining concrete. This research sufficiently manifests the applicability of the WPM method to monitoring the freeze-thaw damage within cold regional tunnel linings.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002180","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Tunnels in cold regions are often subjected to freeze-thaw cycling, which poses a great challenge to a large number of tunnels in operation or to be built in these regions. Therefore, structural health monitoring (SHM) for lining concrete in cold regions is essential to ensure the safety and long-term operation of tunnels. In this study, the wave propagation method (WPM) is applied for the first time to monitor the cyclic freeze-thaw damage of lining concrete. First of all, the failure behaviors of concrete beams subjected to the coupling effect of flexural loading and freeze-thaw cycling are investigated. Particularly, the authors propose a refined numerical model to simulate the freeze-thaw cycling damage process of concrete beams considering the ice-water phase transition and concrete elastoplastic damage. Based on the numerical results, the internal damage expansion and flexural strength attenuation of concrete beams are revealed. Furthermore, the dynamic attenuation characteristics of stress waves are analyzed by using the wavelet packet decomposition and continuous wavelet transform to reveal. In addition, the WPM-based energy index is proposed to characterize the freeze-thaw damage degree of the lining concrete. A strong correlation is found between the stress wave signal and freeze-thaw damage, with a favorable correlation coefficient of 0.932, suggesting the excellent performance of the WPM in assessing the freeze-thaw damage of lining concrete. This research sufficiently manifests the applicability of the WPM method to monitoring the freeze-thaw damage within cold regional tunnel linings.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.