Hao Zheng , Ningyu Yang , Junling Si , Chongqian Ma , Shunji Kanie
{"title":"Influence of ice skeleton on the mechanical behavior of frozen soil under uniaxial compression","authors":"Hao Zheng , Ningyu Yang , Junling Si , Chongqian Ma , Shunji Kanie","doi":"10.1016/j.coldregions.2024.104327","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of multi-layer horizontal ice lenses in frozen soil significantly alters its internal structure, leading to changes in its mechanical properties. To quantitatively analyze the effects of multi-layer ice lenses on mechanical properties, a series of freezing tests were conducted with frost-susceptible clay materials at varied freezing ratios. Then, the uniaxial compression tests were conducted to investigate the deformation and strength properties of frozen soil at different freezing ratios and temperatures. The experimental results indicate that the unique ice skeleton structure formed by horizontal ice lenses and inclined ice wedges can significantly improve the strength of the samples, leading to the peak stress and secant modulus <span><math><msub><mi>E</mi><mn>50</mn></msub></math></span> increase with the freezing ratio, and the presence of an ice skeleton makes the strength more sensitive to temperature changes. The frozen soil samples exhibit two failure modes (bulging failure and shearing failure), which significantly affect the mechanical parameters of the soil. Based on the test results, a frost heave-induced damage coefficient is introduced into the strain softening model to account for the initial stiffness reduction caused by microcracks generated during the ice skeleton growth. This modified model effectively predicts the stress-strain relationship of soils with varying ice skeleton structures. These findings have practical implications for predicting the properties of frozen soil constructed using artificial freezing methods.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002088","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of multi-layer horizontal ice lenses in frozen soil significantly alters its internal structure, leading to changes in its mechanical properties. To quantitatively analyze the effects of multi-layer ice lenses on mechanical properties, a series of freezing tests were conducted with frost-susceptible clay materials at varied freezing ratios. Then, the uniaxial compression tests were conducted to investigate the deformation and strength properties of frozen soil at different freezing ratios and temperatures. The experimental results indicate that the unique ice skeleton structure formed by horizontal ice lenses and inclined ice wedges can significantly improve the strength of the samples, leading to the peak stress and secant modulus increase with the freezing ratio, and the presence of an ice skeleton makes the strength more sensitive to temperature changes. The frozen soil samples exhibit two failure modes (bulging failure and shearing failure), which significantly affect the mechanical parameters of the soil. Based on the test results, a frost heave-induced damage coefficient is introduced into the strain softening model to account for the initial stiffness reduction caused by microcracks generated during the ice skeleton growth. This modified model effectively predicts the stress-strain relationship of soils with varying ice skeleton structures. These findings have practical implications for predicting the properties of frozen soil constructed using artificial freezing methods.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.