Chemical composition of γ-irradiated German chamomile (Matricaria recutita L.) flower essential oils, acetylcholinesterase inhibitory activity and effects on growth inhibition of Staphylococcus aureus and Candida albicans
{"title":"Chemical composition of γ-irradiated German chamomile (Matricaria recutita L.) flower essential oils, acetylcholinesterase inhibitory activity and effects on growth inhibition of Staphylococcus aureus and Candida albicans","authors":"Yatish Pant , Shubham Srivastava , R.K. Lal , Anand Mishra , Laldingngheti Bawitlung , Divya Bhatt , Pankhuri Gupta , Sakshi Yadav , D.U. Bawankule , Vidushi Tyagi , Anirban Pal , C.S. Chanotiya","doi":"10.1016/j.bcab.2024.103391","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation-induced mutations have been the most commonly used technique for the development of mutant varieties. The primary aim has been to upgrade the existing plant varieties by varying a few major traits responsible for limiting metabolite productivity. The increasing regulations on protected plant varieties and germplasms have restricted their use. The induced mutants have played a vital role in strengthening the plant breeding program. The medicinal and aromatic plants have been poorly explored for mutation breeding. CSIR-CIMAP has initiated a mutation breeding program on some of the high-value plants, like <em>Matricaria</em>. As a result, we could develop gamma-rays-induced stable accessions. Genus <em>Matricaria</em> is well known for the biosynthesis of diverse bioactive plant secondary metabolites as well as for its traditional and healthcare benefits documented in Ph. Eur. In the present work, gamma-irradiated stable accessions of German chamomile, <em>Matricaria recutita</em> L., have been investigated for their essential oil composition and biological assessment. After a thorough investigation for a two-year cropping period, we have observed that some accessions contain the highest α-bisabolol oxide B proportions (24.3–55.3%), while quite a few showed chamazulene (2.9–5.8%), α-bisabolone oxide A (6.5–38%), and α-bisabolol oxide A (30.1–55.3%). A few accessions were marked by the presence of lavandulol, an irregular monoterpenoid of high fragrance value. The antibacterial, anti-inflammatory, and acetylcholinesterase (AChE) inhibitory properties of these gamma-irradiated accessions were also evaluated. The accessions G6-R5-5 and G2-R1-6 exhibited maximum inhibition against <em>S. aureus</em> whereas G2-R1-1 arrested the growth of <em>C. albicans</em>. Furthermore, G2R1-3 composition is responsible for reducing AChE and inflammation in cell lines. These results may open up ways to develop plant-derived consumer products from <em>Matricaria recutita</em> L.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187881812400375X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-induced mutations have been the most commonly used technique for the development of mutant varieties. The primary aim has been to upgrade the existing plant varieties by varying a few major traits responsible for limiting metabolite productivity. The increasing regulations on protected plant varieties and germplasms have restricted their use. The induced mutants have played a vital role in strengthening the plant breeding program. The medicinal and aromatic plants have been poorly explored for mutation breeding. CSIR-CIMAP has initiated a mutation breeding program on some of the high-value plants, like Matricaria. As a result, we could develop gamma-rays-induced stable accessions. Genus Matricaria is well known for the biosynthesis of diverse bioactive plant secondary metabolites as well as for its traditional and healthcare benefits documented in Ph. Eur. In the present work, gamma-irradiated stable accessions of German chamomile, Matricaria recutita L., have been investigated for their essential oil composition and biological assessment. After a thorough investigation for a two-year cropping period, we have observed that some accessions contain the highest α-bisabolol oxide B proportions (24.3–55.3%), while quite a few showed chamazulene (2.9–5.8%), α-bisabolone oxide A (6.5–38%), and α-bisabolol oxide A (30.1–55.3%). A few accessions were marked by the presence of lavandulol, an irregular monoterpenoid of high fragrance value. The antibacterial, anti-inflammatory, and acetylcholinesterase (AChE) inhibitory properties of these gamma-irradiated accessions were also evaluated. The accessions G6-R5-5 and G2-R1-6 exhibited maximum inhibition against S. aureus whereas G2-R1-1 arrested the growth of C. albicans. Furthermore, G2R1-3 composition is responsible for reducing AChE and inflammation in cell lines. These results may open up ways to develop plant-derived consumer products from Matricaria recutita L.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.