Changes in the rheological, textural, microstructural and in vitro antioxidant properties of biscuit dough by incorporation of the extract and fiber-rich residue obtained through green extraction of defatted date seeds

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
{"title":"Changes in the rheological, textural, microstructural and in vitro antioxidant properties of biscuit dough by incorporation of the extract and fiber-rich residue obtained through green extraction of defatted date seeds","authors":"","doi":"10.1016/j.foostr.2024.100395","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aimed at utilization of aqueous extract and fiber-rich extraction residue of defatted date seed powder (DDSP) as functional ingredient for improving the quality attributes of biscuit dough. Previously optimized microwave-assisted extraction (MAE) was used to recover the bioactive compounds from small, medium and large sized DDSP particles. Extracts and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich residue were incorporated in dough formulations, before rheological, physical and bioactive properties of dough were investigated. Smallest particles at 7.5 % substitution level resulted in the highest storage (G′) and loss moduli (G″) and lowest creep strain showing the highest resistance to deformation in the dough. Hardness increased with decreasing particle size and increasing substitution level of extraction residue. Highest substitution level with smallest particle size resulted in the darkest dough. Highest total phenolic content (TPC) of 0.60 mg GAE/g was found in the dough with 7.5 % substitution level by medium sized particles. The highest DPPH radical scavenging activity and Ferric reducing antioxidant power (FRAP) values were 2.00 mmol TE/g and 0.34 mmol TE/g, respectively, for small sized particles and 7.5 % substitution level of extraction residue. Substitution of DDSP fiber-rich extraction residue altered the structural arrangement of gluten in the dough.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000315","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed at utilization of aqueous extract and fiber-rich extraction residue of defatted date seed powder (DDSP) as functional ingredient for improving the quality attributes of biscuit dough. Previously optimized microwave-assisted extraction (MAE) was used to recover the bioactive compounds from small, medium and large sized DDSP particles. Extracts and 2.5 %, 5 % and 7.5 % substitution levels of fiber-rich residue were incorporated in dough formulations, before rheological, physical and bioactive properties of dough were investigated. Smallest particles at 7.5 % substitution level resulted in the highest storage (G′) and loss moduli (G″) and lowest creep strain showing the highest resistance to deformation in the dough. Hardness increased with decreasing particle size and increasing substitution level of extraction residue. Highest substitution level with smallest particle size resulted in the darkest dough. Highest total phenolic content (TPC) of 0.60 mg GAE/g was found in the dough with 7.5 % substitution level by medium sized particles. The highest DPPH radical scavenging activity and Ferric reducing antioxidant power (FRAP) values were 2.00 mmol TE/g and 0.34 mmol TE/g, respectively, for small sized particles and 7.5 % substitution level of extraction residue. Substitution of DDSP fiber-rich extraction residue altered the structural arrangement of gluten in the dough.
通过绿色提取脱脂枣籽获得的提取物和富含纤维的残渣对饼干面团的流变学、质地、微结构和体外抗氧化特性的影响
本研究旨在利用脱脂枣籽粉(DDSP)的水提取物和富含纤维的提取残渣作为功能性配料,以改善饼干面团的质量属性。先前优化的微波辅助萃取(MAE)被用来从小粒、中粒和大粒 DDSP 颗粒中回收生物活性化合物。在研究面团的流变、物理和生物活性特性之前,先将提取物和 2.5%、5% 和 7.5%的富含纤维的残留物添加到面团配方中。在 7.5 % 的替代水平下,颗粒最小的面团具有最高的储存模量(G′)和损失模量(G″)以及最低的蠕变应变,这表明面团具有最高的抗变形能力。硬度随着粒度的减小和提取残渣替代水平的提高而增加。替代水平最高、粒度最小的面团颜色最深。中等粒度颗粒的面团中,总酚含量(TPC)最高,为 0.60 mg GAE/g,替代水平为 7.5%。在小颗粒和 7.5% 的提取残渣替代水平下,最高的 DPPH 自由基清除活性和铁还原抗氧化力(FRAP)值分别为 2.00 mmol TE/g 和 0.34 mmol TE/g。富含 DDSP 纤维的提取残渣替代物改变了面团中面筋的结构排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信