Afshin Asadi , Mahdi Bahadoran , Mehdi Askari , Muhammad Arif Jalil
{"title":"All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator","authors":"Afshin Asadi , Mahdi Bahadoran , Mehdi Askari , Muhammad Arif Jalil","doi":"10.1016/j.nancom.2024.100547","DOIUrl":null,"url":null,"abstract":"<div><div>Boolean logic gates are essential components for optical computing and communication systems. However, most existing methods for realizing them require complex structures, high power consumption, or multiple devices. Here, we propose a simple and compact system that can realize five Boolean logic gates, including AND, NAND, OR, NOR, and NOT, by applying different polarization modes and tuning intensities to the input signals within a SOI resonator system, formed by two nested micro rings in a racetrack ring resonator (TNMIRTR). A formula was derived for the optical transfer function of the system using the delay-line-signal method and the logic gates were simulated using the variational finite-difference time domain (varFDTD) method. The proposed structure operates by combining amplitude and polarization-conversion. TNMIRTR gate has several advantages, such as its micro-scale size, low cost, and ability to realize multiple logic gates within a single layout.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892400053X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Boolean logic gates are essential components for optical computing and communication systems. However, most existing methods for realizing them require complex structures, high power consumption, or multiple devices. Here, we propose a simple and compact system that can realize five Boolean logic gates, including AND, NAND, OR, NOR, and NOT, by applying different polarization modes and tuning intensities to the input signals within a SOI resonator system, formed by two nested micro rings in a racetrack ring resonator (TNMIRTR). A formula was derived for the optical transfer function of the system using the delay-line-signal method and the logic gates were simulated using the variational finite-difference time domain (varFDTD) method. The proposed structure operates by combining amplitude and polarization-conversion. TNMIRTR gate has several advantages, such as its micro-scale size, low cost, and ability to realize multiple logic gates within a single layout.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.